No Arabic abstract
We have developed a quantum annealing processor, based on an array of tunably coupled rf-SQUID flux qubits, fabricated in a superconducting integrated circuit process [1]. Implementing this type of processor at a scale of 512 qubits and 1472 programmable inter-qubit couplers and operating at ~ 20 mK has required attention to a number of considerations that one may ignore at the smaller scale of a few dozen or so devices. Here we discuss some of these considerations, and the delicate balance necessary for the construction of a practical processor that respects the demanding physical requirements imposed by a quantum algorithm. In particular we will review some of the design trade-offs at play in the floor-planning of the physical layout, driven by the desire to have an algorithmically useful set of inter-qubit couplers, and the simultaneous need to embed programmable control circuitry into the processor fabric. In this context we have developed a new ultra-low power embedded superconducting digital-to-analog flux converters (DACs) used to program the processor with zero static power dissipation, optimized to achieve maximum flux storage density per unit area. The 512 single-stage, 3520 two-stage, and 512 three-stage flux-DACs are controlled with an XYZ addressing scheme requiring 56 wires. Our estimate of on-chip dissipated energy for worst-case reprogramming of the whole processor is ~ 65 fJ. Several chips based on this architecture have been fabricated and operated successfully at our facility, as well as two outside facilities (see for example [2]).
Early generations of superconducting quantum annealing processors have provided a valuable platform for studying the performance of a scalable quantum computing technology. These studies have directly informed our approach to the design of the next-generation processor. Our design priorities for this generation include an increase in per-qubit connectivity, a problem Hamiltonian energy scale similar to previous generations, reduced Hamiltonian specification errors, and an increase in the processor scale that also leaves programming and readout times fixed or reduced. Here we discuss the specific innovations that resulted in a processor architecture that satisfies these design priorities.
Entanglement lies at the core of quantum algorithms designed to solve problems that are intractable by classical approaches. One such algorithm, quantum annealing (QA), provides a promising path to a practical quantum processor. We have built a series of scalable QA processors consisting of networks of manufactured interacting spins (qubits). Here, we use qubit tunneling spectroscopy to measure the energy eigenspectrum of two- and eight-qubit systems within one such processor, demonstrating quantum coherence in these systems. We present experimental evidence that, during a critical portion of QA, the qubits become entangled and that entanglement persists even as these systems reach equilibrium with a thermal environment. Our results provide an encouraging sign that QA is a viable technology for large-scale quantum computing.
We operate a superconducting quantum processor consisting of two tunable transmon qubits coupled by a swapping interaction, and equipped with non destructive single-shot readout of the two qubits. With this processor, we run the Grover search algorithm among four objects and find that the correct answer is retrieved after a single run with a success probability between 0.52 and 0.67, significantly larger than the 0.25 achieved with a classical algorithm. This constitutes a proof-of-concept for the quantum speed-up of electrical quantum processors.
We have designed, fabricated and operated a scalable system for applying independently programmable time-independent, and limited time-dependent flux biases to control superconducting devices in an integrated circuit. Here we report on the operation of a system designed to supply 64 flux biases to devices in a circuit designed to be a unit cell for a superconducting adiabatic quantum optimization system. The system requires six digital address lines, two power lines, and a handful of global analog lines.
More computational resources (i.e., more physical qubits and qubit connections) on a superconducting quantum processor not only improve the performance but also result in more complex chip architecture with lower yield rate. Optimizing both of them simultaneously is a difficult problem due to their intrinsic trade-off. Inspired by the application-specific design principle, this paper proposes an automatic design flow to generate simplified superconducting quantum processor architecture with negligible performance loss for different quantum programs. Our architecture-design-oriented profiling method identifies program components and patterns critical to both the performance and the yield rate. A follow-up hardware design flow decomposes the complicated design procedure into three subroutines, each of which focuses on different hardware components and cooperates with corresponding profiling results and physical constraints. Experimental results show that our design methodology could outperform IBMs general-purpose design schemes with better Pareto-optimal results.