Do you want to publish a course? Click here

State-specific detection of trapped HfF$^+$ by photodissociation

133   0   0.0 ( 0 )
 Added by Kevin Cossel
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use (1+1$$) resonance-enhanced multiphoton photodissociation (REMPD) to detect the population in individual rovibronic states of trapped HfF$^+$ with a single-shot absolute efficiency of 18%, which is over 200 times better than that obtained with fluorescence detection. The first photon excites a specific rotational level to an intermediate vibronic band at 35,000-36,500 cm$^{-1}$, and the second photon, at 37,594 cm$^{-1}$ (266 nm), dissociates HfF$^+$ into Hf$^+$ and F. Mass-resolved time-of-flight ion detection then yields the number of state-selectively dissociated ions. Using this method, we observe rotational-state heating of trapped HfF$^+$ ions from collisions with neutral Ar atoms. Furthermore, we measure the lifetime of the $^3Delta_1$ $v=0,, J=1$ state to be 2.1(2) s. This state will be used for a search for a permanent electric dipole moment of the electron.



rate research

Read More

Autoionization of Rydberg states of HfF, prepared using the optical-optical double resonance (OODR) technique, holds promise to create HfF+ in a particular Zeeman level of a rovibronic state for an electron electric dipole moment (eEDM) search. We characterize a vibronic band of Rydberg HfF at 54 cm-1 above the lowest ionization threshold and directly probe the state of the ions formed from this vibronic band by performing laser-induced fluorescence (LIF) on the ions. The Rydberg HfF molecules show a propensity to decay into only a few ion rotational states of a given parity and are found to preserve their orientation qualitatively upon autoionization. We show empirically that we can create 30% of the total ion yield in a particular |J+,M+> state and present a simplified model describing autoionization from a given Rydberg state that assumes no angular dynamics.
89 - Fan Jia , Zhichao Guo , Lintao Li 2020
We demonstrate detection of NaRb Feshbach molecules at high magnetic field by combining molecular photodissociation and absorption imaging of the photofragments. The photodissociation process is carried out via a spectroscopically selected hyperfine Zeeman level correlated with the Na ($3P_{3/2}$) + Rb ($5S_{1/2}$) asymptote which, following spontaneous emission and optical pumping, leads to ground-state atoms in a single level with near unity probability. Subsequent to the dissociation, the number of molecules is obtained by detecting the resultant $^{23}$Na and $^{87}$Rb atoms. We have also studied the heating effect caused by the photodissociation process and optimized the detection protocol for extracting the temperature of the molecular cloud. This method enables the $in~situ$ detection of fast time scale collision dynamics between NaRb Feshbach molecules and will be a valuable capability in studying few-body physics involving molecules.
Processes that break molecular bonds are typically observed with molecules occupying a mixture of quantum states and successfully described with quasiclassical models, while a few studies have explored the distinctly quantum mechanical low-energy regime. Here we use photodissociation of diatomic strontium molecules to demonstrate the crossover from the ultracold, quantum regime where the photofragment angular distributions strongly depend on the kinetic energy, to the energy-independent quasiclassical regime. Using time-of-flight velocity map imaging for photodissociation channels with millikelvin reaction barriers, we explore photofragment energies in the 0.1-300 mK range experimentally and up to 3 K theoretically, and discuss the energy scale at which the crossover occurs. Furthermore, we find that the effects of quantum statistics can unexpectedly persist to high photodissociation energies.
Photodissociation of a molecule produces a spatial distribution of photofragments determined by the molecular structure and the characteristics of the dissociating light. Performing this basic chemical reaction at ultracold temperatures allows its quantum mechanical features to dominate. In this regime, weak applied fields can be used to control the reaction. Here, we photodissociate ultracold diatomic strontium in magnetic fields below 10 G and observe striking changes in photofragment angular distributions. The observations are in excellent qualitative agreement with a multichannel quantum chemistry model that includes nonadiabatic effects and predicts strong mixing of partial waves in the photofragment energy continuum. The experiment is enabled by precise quantum-state control of the molecules.
Nuclei with a quadrupole deformation such as $^{177}$Hf have enhanced weak quadrupole moment which induces the tensor weak electron-nucleus interaction in atoms and molecules. Corresponding parity non-conserving (PNC) effect is strongly enhanced in the $^3Delta_1$ electronic state of the $^{177}$HfF$^+$ cation which has very close opposite parity levels mixed by this tensor interaction. In the present paper we perform relativistic many-body calculations of this PNC effect. It is shown that the tensor weak interaction induced by the weak quadrupole moment gives the dominating contribution to the PNC effects in $^{177}$HfF$^+$ which significantly exceeds contributions of the vector anapole moment and the scalar weak charge. The anapole and the weak charge can contribute due to the nonadiabatic mechanism proposed here. Therefore, corresponding experiment will allow one to separate the tensor weak PNC effect from the other PNC effects and to measure the quadrupole moment of the neutron distribution which gives the dominating contribution to the weak quadrupole moment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا