Do you want to publish a course? Click here

Observation of entanglement propagation in a quantum many-body system

205   0   0.0 ( 0 )
 Added by Petar Jurcevic
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The key to explaining a wide range of quantum phenomena is understanding how entanglement propagates around many-body systems. Furthermore, the controlled distribution of entanglement is of fundamental importance for quantum communication and computation. In many situations, quasiparticles are the carriers of information around a quantum system and are expected to distribute entanglement in a fashion determined by the system interactions. Here we report on the observation of magnon quasiparticle dynamics in a one-dimensional many-body quantum system of trapped ions representing an Ising spin model. Using the ability to tune the effective interaction range, and to prepare and measure the quantum state at the individual particle level, we observe new quasiparticle phenomena. For the first time, we reveal the entanglement distributed by quasiparticles around a many-body system. Second, for long-range interactions we observe the divergence of quasiparticle velocity and breakdown of the light-cone picture that is valid for short-range interactions. Our results will allow experimental studies of a wide range of phenomena, such as quantum transport, thermalisation, localisation and entanglement growth, and represent a first step towards a new quantum-optical regime with on-demand quasiparticles with tunable non-linear interactions.



rate research

Read More

Thermalizing quantum systems are conventionally described by statistical mechanics at equilibrium. However, not all systems fall into this category, with many body localization providing a generic mechanism for thermalization to fail in strongly disordered systems. Many-body localized (MBL) systems remain perfect insulators at non-zero temperature, which do not thermalize and therefore cannot be described using statistical mechanics. In this Colloquium we review recent theoretical and experimental advances in studies of MBL systems, focusing on the new perspective provided by entanglement and non-equilibrium experimental probes such as quantum quenches. Theoretically, MBL systems exhibit a new kind of robust integrability: an extensive set of quasi-local integrals of motion emerges, which provides an intuitive explanation of the breakdown of thermalization. A description based on quasi-local integrals of motion is used to predict dynamical properties of MBL systems, such as the spreading of quantum entanglement, the behavior of local observables, and the response to external dissipative processes. Furthermore, MBL systems can exhibit eigenstate transitions and quantum orders forbidden in thermodynamic equilibrium. We outline the current theoretical understanding of the quantum-to-classical transition between many-body localized and ergodic phases, and anomalous transport in the vicinity of that transition. Experimentally, synthetic quantum systems, which are well-isolated from an external thermal reservoir, provide natural platforms for realizing the MBL phase. We review recent experiments with ultracold atoms, trapped ions, superconducting qubits, and quantum materials, in which different signatures of many-body localization have been observed. We conclude by listing outstanding challenges and promising future research directions.
The control of many-body quantum dynamics in complex systems is a key challenge in the quest to reliably produce and manipulate large-scale quantum entangled states. Recently, quench experiments in Rydberg atom arrays (Bluvstein et. al., arXiv:2012.12276) demonstrated that coherent revivals associated with quantum many-body scars can be stabilized by periodic driving, generating stable subharmonic responses over a wide parameter regime. We analyze a simple, related model where these phenomena originate from spatiotemporal ordering in an effective Floquet unitary, corresponding to discrete time-crystalline (DTC) behavior in a prethermal regime. Unlike conventional DTC, the subharmonic response exists only for Neel-like initial states, associated with quantum scars. We predict robustness to perturbations and identify emergent timescales that could be observed in future experiments. Our results suggest a route to controlling entanglement in interacting quantum systems by combining periodic driving with many-body scars.
Over the past years, machine learning has emerged as a powerful computational tool to tackle complex problems over a broad range of scientific disciplines. In particular, artificial neural networks have been successfully deployed to mitigate the exponential complexity often encountered in quantum many-body physics, the study of properties of quantum systems built out of a large number of interacting particles. In this Article, we overview some applications of machine learning in condensed matter physics and quantum information, with particular emphasis on hands-on tutorials serving as a quick-start for a newcomer to the field. We present supervised machine learning with convolutional neural networks to learn a phase transition, unsupervised learning with restricted Boltzmann machines to perform quantum tomography, and variational Monte Carlo with recurrent neural-networks for approximating the ground state of a many-body Hamiltonian. We briefly review the key ingredients of each algorithm and their corresponding neural-network implementation, and show numerical experiments for a system of interacting Rydberg atoms in two dimensions.
We report here the experimental observation of a dynamical quantum phase transition in a strongly interacting open photonic system. The system studied, comprising a Jaynes-Cummings dimer realized on a superconducting circuit platform, exhibits a dissipation driven localization transition. Signatures of the transition in the homodyne signal and photon number reveal this transition to be from a regime of classical oscillations into a macroscopically self-trapped state manifesting revivals, a fundamentally quantum phenomenon. This experiment also demonstrates a small-scale realization of a new class of quantum simulator, whose well controlled coherent and dissipative dynamics is suited to the study of quantum many-body phenomena out of equilibrium.
We introduce the concept of embedding quantum simulators, a paradigm allowing the efficient quantum computation of a class of bipartite and multipartite entanglement monotones. It consists in the suitable encoding of a simulated quantum dynamics in the enlarged Hilbert space of an embedding quantum simulator. In this manner, entanglement monotones are conveniently mapped onto physical observables, overcoming the necessity of full tomography and reducing drastically the experimental requirements. Furthermore, this method is directly applicable to pure states and, assisted by classical algorithms, to the mixed-state case. Finally, we expect that the proposed embedding framework paves the way for a general theory of enhanced one-to-one quantum simulators.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا