Do you want to publish a course? Click here

High fidelity single-shot readout of a transmon qubit using a SLUG {mu}wave amplifier

130   0   0.0 ( 0 )
 Added by Yanbing Liu
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report high-fidelity, quantum nondemolition, single-shot readout of a superconducting transmon qubit using a DC-biased superconducting low-inductance undulatory galvanometer(SLUG) amplifier. The SLUG improves the system signal-to-noise ratio by 7 dB in a 20 MHz window compared with a bare HEMT amplifier. An optimal cavity drive pulse is chosen using a genetic search algorithm, leading to a maximum combined readout and preparation fidelity of 91.9% with a measurement time of Tmeas = 200ns. Using post-selection to remove preparation errors caused by heating, we realize a combined preparation and readout fidelity of 94.3%.



rate research

Read More

Determination of qubit initialisation and measurement fidelity is important for the overall performance of a quantum computer. However, the method by which it is calculated in semiconductor qubits varies between experiments. In this paper we present a full theoretical analysis of electronic single-shot readout and describe critical parameters to achieve high fidelity readout. In particular, we derive a model for energy selective state readout based on a charge detector response and examine how to optimise the fidelity by choosing correct experimental parameters. Although we focus on single electron spin readout, the theory presented can be applied to other electronic readout techniques in semiconductors that use a reservoir.
126 - A. Dewes , F. R. Ong , V. Schmitt 2011
We report the characterization of a two-qubit processor implemented with two capacitively coupled tunable superconducting qubits of the transmon type, each qubit having its own non-destructive single-shot readout. The fixed capacitive coupling yields the sqrt{iSWAP} two-qubit gate for a suitable interaction time. We reconstruct by state tomography the coherent dynamics of the two-bit register as a function of the interaction time, observe a violation of the Bell inequality by 22 standard deviations after correcting readout errors, and measure by quantum process tomography a gate fidelity of 90%.
The speed of quantum gates and measurements is a decisive factor for the overall fidelity of quantum protocols when performed on physical qubits with finite coherence time. Reducing the time required to distinguish qubit states with high fidelity is therefore a critical goal in quantum information science. The state-of-the-art readout of superconducting qubits is based on the dispersive interaction with a readout resonator. Here, we bring this technique to its current limit and demonstrate how the careful design of system parameters leads to fast and high-fidelity measurements without affecting qubit coherence. We achieve this result by increasing the dispersive interaction strength, by choosing an optimal linewidth of the readout resonator, by employing a Purcell filter, and by utilizing phase-sensitive parametric amplification. In our experiment, we measure 98.25% readout fidelity in only 48 ns, when minimizing read-out time, and 99.2% in 88 ns, when maximizing the fidelity, limited predominantly by the qubit lifetime of 7.6 us. The presented scheme is also expected to be suitable for integration into a multiplexed readout architecture.
While relatively easy to engineer, static transverse coupling between a qubit and a cavity mode satisfies the criteria for a quantum non-demolition (QND) measurement only if the coupling between the qubit and cavity is much less than their mutual detuning. This can put significant limits on the speed of the measurement, requiring trade-offs in the circuit design between coupling, detuning, and decoherence introduced by the cavity mode. Here, we study a circuit in which the qubit-cavity and the cavity-feedline coupling can be turned on and off, which helps to isolate the qubit. We do not rely on the rotating-wave or dispersive approximations, but solve the full transverse interaction between the qubit and the cavity mode. We show that by carefully choosing the detuning and interaction time, we can exploit a recurrence in the qubit-cavity dynamics in a way that makes it possible to perform very fast, high fidelity, QND measurements. Here, the qubit measurement is performed more like a gate operation between the qubit and the cavity, where the cavity state can be amplified, squeezed, and released in a time-sequenced fashion. In addition, we also show that the non-demolition property of the off-resonant approximation breaks down much faster than its dispersive property, suggesting that many of the dispersive measurements to date have been implemented outside the QND regime.
We report single-shot readout of a superconducting flux qubit by using a flux-driven Josephson parametric amplifier (JPA). After optimizing the readout power, gain of the JPA and timing of the data acquisition, we observe the Rabi oscillations with a contrast of 74% which is mainly limited by the bandwidth of the JPA and the energy relaxation of the qubit. The observation of quantum jumps between the qubit eigenstates under continuous monitoring indicates the nondestructiveness of the readout scheme.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا