No Arabic abstract
This work examines infalling matter following an enormous Coronal Mass Ejection (CME) on 2011 June 7. The material formed discrete concentrations, or blobs, in the corona and fell back to the surface, appearing as dark clouds against the bright corona. In this work we examined the density and dynamic evolution of these blobs in order to formally assess the intriguing morphology displayed throughout their descent. The blobs were studied in five wavelengths (94, 131, 171, 193 and 211 AA) using the Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO/AIA), comparing background emission to attenuated emission as a function of wavelength to calculate column densities across the descent of four separate blobs. We found the material to have a column density of hydrogen of approximately 2 $times$ 10$^{19}$ cm$^{-2}$, which is comparable with typical pre-eruption filament column densities. Repeated splitting of the returning material is seen in a manner consistent with the Rayleigh-Taylor instability. Furthermore, the observed distribution of density and its evolution are also a signature of this instability. By approximating the three-dimensional geometry (with data from STEREO-A), volumetric densities were found to be approximately 2 $times$ 10$^{-14}$ g cm$^{-3}$, and this, along with observed dominant length-scales of the instability, was used to infer a magnetic field of the order 1 G associated with the descending blobs.
Solar filaments exhibit a range of eruptive-like dynamic activity, ranging from the full or partial eruption of the filament mass and surrounding magnetic structure as a coronal mass ejection (CME), to a fully confined or failed eruption. On 2011 June 7, a dramatic partial eruption of a filament was observed by multiple instruments on SDO and STEREO. One of the interesting aspects of this event is the response of the solar atmosphere as non-escaping material falls inward under the influence of gravity. The impact sites show clear evidence of brightening in the observed EUV wavelengths due to energy release. Two plausible physical mechanisms explaining the brightening are considered: heating of the plasma due to the kinetic energy of impacting material compressing the plasma, or reconnection between the magnetic field of low-lying loops and the field carried by the impacting material. By analyzing the emission of the brightenings in several SDO/AIA wavelengths, and comparing the kinetic energy of the impacting material (7.6 x 10^26 - 5.8 x 10^27 ergs) to the radiative energy (1.9 x 10^25 - 2.5 x 10^26 ergs) we find the dominant mechanism of energy release involved in the observed brightening is plasma compression.
We investigate whether flux cancellation is responsible for the formation of a very massive filament resulting in the spectacular 2011 June 7 eruption. We analyse and quantify the amount of flux cancellation that occurs in NOAA AR 11226 and its two neighbouring ARs (11227 & 11233) using line-of-sight magnetograms from the Heliospheric Magnetic Imager. During a 3.6-day period building up to the filament eruption, 1.7 x 10^21 Mx, 21% of AR 11226s maximum magnetic flux, was cancelled along the polarity inversion line (PIL) where the filament formed. If the flux cancellation continued at the same rate up until the eruption then up to 2.8 x 10^21 Mx (34% of the AR flux) may have been built into the magnetic configuration that contains the filament plasma. The large flux cancellation rate is due to an unusual motion of the positive polarity sunspot, which splits, with the largest section moving rapidly towards the PIL. This motion compresses the negative polarity and leads to the formation of an orphan penumbra where one end of the filament is rooted. Dense plasma threads above the orphan penumbra build into the filament, extending its length, and presumably injecting material into it. We conclude that the exceptionally strong flux cancellation in AR 11226 played a significant role in the formation of its unusually massive filament. In addition, the presence and coherent evolution of bald patches in the vector magnetic field along the PIL suggests that the magnetic field configuration supporting the filament material is that of a flux rope.
The relationship between X-ray and UV emission during flares, particularly in the context of quasi-periodic pulsations, remains unclear. To address this, we study the impulsive X-ray and UV emission during the eruptive flare of 2011 June 7 utilising X-ray imaging from RHESSI and UV 1700A imaging from SDO/AIA. This event is associated with quasi-periodic pulsations in X-ray and possibly UV emission, as well as substantial parallel and perpendicular motion of the hard X-ray footpoints. The motion of the footpoints parallel to the flare ribbons is unusual; it is shown to reverse direction on at least two occasions. However, there is no associated short-timescale motion of the UV bright regions. Additionally, we find that the locations of the brightest X-ray and UV regions are different, particularly during the early portion of the flare impulsive phase, despite their integrated emission being strongly correlated in time. Correlation analysis of measured flare properties, such as the footpoint separation, flare shear, photospheric magnetic field and coronal reconnection rate, reveals that - in the impulsive phase - the 25 - 50 keV hard X-ray flux is only weakly correlated with these properties, in contrast to previous studies. We characterise this event in terms of long-term behaviour, where the X-ray nonthermal, thermal, and UV emission sources appear temporally and spatially consistent, and short-term behaviour, where the emission sources are inconsistent and quasi-periodic pulsations are a dominant feature requiring explanation. We suggest that the short timescale behaviour of hard X-ray footpoints, and the nature of the observed quasi-periodic pulsations, is determined by fundamental, as-yet unobserved properties of the reconnection region and particle acceleration sites. This presents a challenge for current three-dimensional flare reconnection models.
Coronal mass ejections (CMEs) erupt and expand in a magnetically structured solar corona. Various indirect observational pieces of evidence have shown that the magnetic field of CMEs reconnects with surrounding magnetic fields, forming, e.g., dimming regions distant from the CME source regions. Analyzing Solar Dynamics Observatory (SDO) observations of the eruption from AR 11226 on 2011 June 7, we present the first direct evidence of coronal magnetic reconnection between the fields of two adjacent ARs during a CME. The observations are presented jointly with a data-constrained numerical simulation, demonstrating the formation/intensification of current sheets along a hyperbolic flux tube (HFT) at the interface between the CME and the neighbouring AR 11227. Reconnection resulted in the formation of new magnetic connections between the erupting magnetic structure from AR 11226 and the neighboring active region AR 11227 about 200 Mm from the eruption site. The onset of reconnection first becomes apparent in the SDO/AIA images when filament plasma, originally contained within the erupting flux rope, is re-directed towards remote areas in AR 11227, tracing the change of large-scale magnetic connectivity. The location of the coronal reconnection region becomes bright and directly observable at SDO/AIA wavelengths, owing to the presence of down-flowing cool, dense (10^{10} cm^{-3}) filament plasma in its vicinity. The high-density plasma around the reconnection region is heated to coronal temperatures, presumably by slow-mode shocks and Coulomb collisions. These results provide the first direct observational evidence that CMEs reconnect with surrounding magnetic structures, leading to a large-scale re-configuration of the coronal magnetic field.
On June 4 2011 the Puyehue-Cord{o}n Caulle volcanic system produced a pyroclastic subplinian eruption reaching level 3 in the volcanic explosivity index. The first stage of the eruption released sand and ashes that affected small towns and cities in the surrounding areas, including San Carlos de Bariloche, in Argentina, one of the largest cities in the North Patagonian andean region. By treating the eruption as a Fermi problem, we estimated the volume and mass of sand ejected as well as the energy and power released during the eruptive phase. We then put the results in context by comparing the obtained values with everyday quantities, like the load of a cargo truck or the electric power produced in Argentina. These calculations have been done as a pedagogic exercise, and after evaluation of the hypothesis was done in the classroom, the calculations have been performed by the students. These are students of the first physics course at the Physics and Chemistry Teacher Programs of the Universidad Nacional de R{i}o Negro.