Do you want to publish a course? Click here

Spin injection via (110)-grown semiconductor barriers

121   0   0.0 ( 0 )
 Added by S. A. Tarasenko
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the tunneling of conduction electrons through a (110)-oriented single-barrier heterostructure grown from III-V semiconductor compounds. It is shown that, due to low spatial symmetry of such a barrier, the tunneling current through the barrier leads to an electron spin polarization. The inverse effect, generation of a direct tunneling current by spin polarized electrons, is also predicted. We develop the microscopic theory of the effects and show that the spin polarization emerges due to the combined action of the Dresselhaus spin-orbit coupling within the barrier and the Rashba spin-orbit coupling at the barrier interfaces.



rate research

Read More

The bias dependence of spin injection in graphene lateral spin valves is systematically studied to determine the factors affecting the tunneling spin injection efficiency. Three types of junctions are investigated, including MgO and hexagonal boron nitride (hBN) tunnel barriers and direct contacts. A DC bias current applied to the injector electrode induces a strong nonlinear bias dependence of the nonlocal spin signal for both MgO and hBN tunnel barriers. Furthermore, this signal reverses its sign at a negative DC bias for both kinds of tunnel barriers. The analysis of the bias dependence for injector electrodes with a wide range of contact resistances suggests that the sign reversal correlates with bias voltage rather than current. We consider different mechanisms for nonlinear bias dependence and conclude that the energy-dependent spin-polarized electronic structure of the ferromagnetic electrodes, rather than the electrical field-induced spin drift effect or spin filtering effect of the tunnel barrier, is the most likely explanation of the experimental observations.
Symmetry and spin dephasing of in (110)-grown GaAs quantum wells (QWs) are investigated applying magnetic field induced photogalvanic effect (MPGE) and time-resolved Kerr rotation. We show that MPGE provides a tool to probe the symmetry of (110)-grown quantum wells. The photocurrent is only observed for asymmetric structures but vanishes for symmetric QWs. Applying Kerr rotation we prove that in the latter case the spin relaxation time is maximal, therefore these structures set upper limit of spin dephasing in GaAs QWs. We also demonstrate that structure inversion asymmetry can be controllably tuned to zero by variation of delta-doping layer position.
We introduce selective area grown hybrid InAs/Al nanowires based on molecular beam epitaxy, allowing arbitrary semiconductor-superconductor networks containing loops and branches. Transport reveals a hard induced gap and unpoisoned 2e-periodic Coulomb blockade, with temperature dependent 1e features in agreement with theory. Coulomb peak spacing in parallel magnetic field displays overshoot, indicating an oscillating discrete near-zero subgap state consistent with device length. Finally, we investigate a loop network, finding strong spin-orbit coupling and a coherence length of several microns. These results demonstrate the potential of this platform for scalable topological networks among other applications.
We predict it is possible to achieve high-efficiency room-temperature spin injection from a mag- netic metal into InAs-based semiconductors using an engineered Schottky barrier based on an InAs/AlSb superlattice. The Schottky barrier with most metals is negative for InAs and positive for AlSb. For such metals there exist InAs/AlSb superlattices with a conduction band edge perfectly aligned with the metals Fermi energy. The initial AlSb layer can be grown to the thickness required to produce a desired interface resistance. We show that the conductivity and spin lifetimes of such superlattices are sufficiently high to permit efficient spin injection from ferromagnetic metals.
We study the optically induced spin polarization, spin dephasing and diffusion in several high-mobility two-dimensional electron systems, which are embedded in GaAs quantum wells grown on (110)-oriented substrates. The experimental techniques comprise a two-beam magneto-optical spectroscopy system and polarization-resolved photoluminescence. Under weak excitation conditions at liquid-helium temperatures, we observe spin lifetimes above 100 ns in one of our samples, which are reduced with increasing excitation density due to additional, hole-mediated, spin dephasing. The spin dynamic is strongly influenced by the carrier density and the ionization of remote donors, which can be controlled by temperature and above-barrier illumination. The absolute value of the average electron spin polarization in the samples is directly observable in the circular polarization of photoluminescence collected under circularly polarized excitation and reaches values of about 5 percent. Spin diffusion is studied by varying the distance between pump and probe beams in micro-spectroscopy experiments. We observe diffusion lengths above 100 $mu$m and, at high excitation intensity, a nonmonotonic dependence of the spin polarization on the pump-probe distance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا