Magnified Views of the Ultrafast Outflow of the z = 1.51 AGN HS 0810+2554


Abstract in English

We present results from an observation of the gravitationally lensed z=1.51 narrow absorption line AGN HS 0810+2554 performed with the Chandra X-ray Observatory. The factor of ~100 lensing magnification of HS 0810+2554 makes this source exceptionally bright. Absorption lines are detected at rest-frame energies of ~ 7.7 keV and ~11.0 keV at >97% significance. By interpreting these lines to arise from highly ionized iron the implied outflow velocities of the X-ray absorbing gas corresponding to these lines are 0.13c and 0.41c, respectively. The presence of these relativistic outflows and the absence of any significant low-energy X-ray absorption suggest that a shielding gas is not required for the generation of the relativistic X-ray absorbing winds in HS 0810+2554. UV spectroscopic observations with VLT/UVES indicate that the UV absorbing material is outflowing at v_UV ~0.065c. Our analysis indicates that the fraction of the total bolometric energy released by HS 0810+2554 into the IGM in the form of kinetic energy is epsilon_k = 1.0(-0.6,+0.8). An efficiency of greater than unity implies that magnetic driving is likely a significant contributor to the acceleration of this X-ray absorbing wind. We also estimate the mass-outflow rate of the strongest absorption component to be Mdot_abs=1.1(-0.7,+0.9) M_solar yr^-1. Assuming that the energetic outflow detected in the NAL AGN HS 0810+2554 is a common property of most AGN it would suggest that the X-ray absorbing wind may have a larger opening angle than previously thought. This has important consequences for estimating the feedback contribution of X-ray absorbing winds to the surrounding IGM.

Download