Do you want to publish a course? Click here

Efficiency Measurements and Installation of a New Grating for the OSIRIS Spectrograph at Keck Observatory

246   0   0.0 ( 0 )
 Added by Etsuko Mieda
 Publication date 2014
  fields Physics
and research's language is English
 Authors Etsuko Mieda




Ask ChatGPT about the research

OSIRIS is a near-infrared integral field spectrograph operating behind the adaptive optics system at W. M. Keck Observatory. While OSIRIS has been a scientifically productive instrument to date, its sensitivity has been limited by a grating efficiency that is less than half of what was expected. The spatially averaged efficiency of the old grating, weighted by error, is measured to be 39.5 +/- 0.8 % at {lambda} = 1.310 {mu}m, with large field dependent variation of 11.7 % due to efficiency variation across the grating surface. Working with a new vendor, we developed a more efficient and uniform grating with a weighted average efficiency at {lambda} = 1.310 {mu}m of 78.0 +/- 1.6 %, with field variation of only 2.2 %. This is close to double the average efficiency and five times less variation across the field. The new grating was installed in December 2012, and on- sky OSIRIS throughput shows an average factor of 1.83 improvement in sensitivity between 1 and 2.4 microns. We present the development history, testing, and implementation of this new near-infrared grating for OSIRIS and report the comparison with the predecessors. The higher sensitivities are already having a large impact on scientific studies with OSIRIS.



rate research

Read More

OSIRIS is a near-infrared (1.0--2.4 $mu$m) integral field spectrograph operating behind the adaptive optics system at Keck Observatory, and is one of the first lenslet-based integral field spectrographs. Since its commissioning in 2005, it has been a productive instrument, producing nearly half the laser guide star adaptive optics (LGS AO) papers on Keck. The complexity of its raw data format necessitated a custom data reduction pipeline (DRP) delivered with the instrument in order to iteratively assign flux in overlapping spectra to the proper spatial and spectral locations in a data cube. Other than bug fixes and updates required for hardware upgrades, the bulk of the DRP has not been updated since initial instrument commissioning. We report on the first major comprehensive characterization of the DRP using on-sky and calibration data. We also detail improvements to the DRP including characterization of the flux assignment algorithm; exploration of spatial rippling in the reduced data cubes; and improvements to several calibration files, including the rectification matrix, the bad pixel mask, and the wavelength solution. We present lessons learned from over a decade of OSIRIS data reduction that are relevant to the next generation of integral field spectrograph hardware and data reduction software design.
We report on the design, construction, and commissioning of a prototype aperture masking technology implemented at the Keck OSIRIS Imager: the holographic aperture mask. Holographic aperture masking (HAM) aims at (i) increasing the throughput of sparse aperture masking (SAM) by selectively combining all subapertures across a telescope pupil in multiple interferograms using a phase mask, and (ii) adding low-resolution spectroscopic capabilities. Using liquid-crystal geometric phase patterns, we manufacture a HAM mask that uses an 11-hole SAM design as the central component and a holographic component comprising 19 different subapertures. Thanks to a multilayer liquid-crystal implementation, the mask has a diffraction efficiency higher than 96% from 1.1 to 2.5 micron. We create a pipeline that extracts monochromatic closure phases from the central component as well as multiwavelength closure phases from the holographic component. We test the performance of the HAM mask in the laboratory and on-sky. The holographic component yields 26 closure phases with spectral resolutions between R$sim$6.5 and R$sim$15. On April 19, 2019, we observed the binary star HDS 1507 in the Hbb filter ($lambda_0 = 1638$ nm and $Delta lambda = 330$ nm) and retrieved a constant separation of 120.9 $pm 0.5$ mas for the independent wavelength bins, which is in excellent agreement with literature values. For both the laboratory measurements and the observations of unresolved reference stars, we recorded nonzero closure phases -- a potential source of systematic error that we traced to polarization leakage of the HAM optic. We propose a future upgrade that improves the performance, reducing this effect to an acceptable level. Holographic aperture masking is a simple upgrade of SAM with increased throughput and a new capability of simultaneous low-resolution spectroscopy that provides new differential observables.
196 - H. D. Tran 2014
A collaboration between the W. M. Keck Observatory (WMKO) in Hawaii and the NASA Exoplanet Science Institute (NExScI) in California, the Keck Observatory Archive (KOA) was commissioned in 2004 to archive observing data from WMKO, which operates two classically scheduled 10 m ground-based telescopes. The observing data from Keck is not suitable for direct ingestion into the archive since the metadata contained in the original FITS headers lack the information necessary for proper archiving. Coupled with different standards among instrument builders and the heterogeneous nature of the data inherent in classical observing, in which observers have complete control of the instruments and their observations, the data pose a number of technical challenges for KOA. We describe the methodologies and tools that we have developed to successfully address these difficulties, adding content to the FITS headers and retrofitting the metadata in order to support archiving Keck data, especially those obtained before the archive was designed. With the expertise gained from having successfully archived observations taken with all eight currently active instruments at WMKO, we have developed lessons learned from handling this complex array of heterogeneous metadata that help ensure a smooth ingestion of data not only for current but also future instruments, as well as a better experience for the archive user.
High-multiplex and deep spectroscopic follow-up of upcoming panoramic deep-imaging surveys like LSST, Euclid, and WFIRST is a widely recognized and increasingly urgent necessity. No current or planned facility at a U.S. observatory meets the sensitivity, multiplex, and rapid-response time needed to exploit these future datasets. FOBOS, the Fiber-Optic Broadband Optical Spectrograph, is a near-term fiber-based facility that addresses these spectroscopic needs by optimizing depth over area and exploiting the aperture advantage of the existing 10m Keck II Telescope. The result is an instrument with a uniquely blue-sensitive wavelength range (0.31-1.0 um) at R~3500, high-multiplex (1800 fibers), and a factor 1.7 greater survey speed and order-of-magnitude greater sampling density than Subarus Prime Focus Spectrograph (PFS). In the era of panoramic deep imaging, FOBOS will excel at building the deep, spectroscopic reference data sets needed to interpret vast imaging data. At the same time, its flexible focal plane, including a mode with 25 deployable integral-field units (IFUs) across a 20 arcmin diameter field, enables an expansive range of scientific investigations. Its key programmatic areas include (1) nested stellar-parameter training sets that enable studies of the Milky Way and M31 halo sub-structure, as well as local group dwarf galaxies, (2) a comprehensive picture of galaxy formation thanks to detailed mapping of the baryonic environment at z~2 and statistical linking of evolving populations to the present day, and (3) dramatic enhancements in cosmological constraints via precise photometric redshifts and determined redshift distributions. In combination with Keck I instrumentation, FOBOS also provides instant access to medium-resolution spectroscopy for transient sources with full coverage from the UV to the K-band.
MAROON-X is a red-optical, high precision radial velocity spectrograph currently nearing completion and undergoing extensive performance testing at the University of Chicago. The instrument is scheduled to be installed at Gemini North in the first quarter of 2019. MAROON-X will be the only RV spectrograph on a large telescope with full access by the entire US community. In these proceedings we discuss the latest addition of the red wavelength arm and the two science grade detector systems, as well as the design and construction of the telescope front end. We also present results from ongoing RV stability tests in the lab. First results indicate that MAROON-X can be calibrated at the sub-m/s level, and perhaps even much better than that using a simultaneous reference approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا