No Arabic abstract
We have investigated the electronic structure of graphene supported on Re(0001) before and after the intercalation of one monolayer of Ag by means of angle-resolved photoemission spectroscopy measurements and density functional theory calculations. The intercalation of Ag reduces the graphene-Re interaction and modifies the electronic band structure of graphene. Although the linear dispersion of the {pi} state of graphene in proximity of the Fermi level highlights a rather weak graphene-noble metal layer interaction, we still observe a significant hybridization between the Ag bands and the {pi} state in lower energy regions. These results demonstrate that covering a surface with a noble metal layer does decouple the electronic states, but still leads to a noticeable change in the electronic structure of graphene.
The results of density functional theory calculations and measurements using X-ray photoelectron spectroscopy of Co-nanoparticles dispersed on graphene/Cu are presented. It is found that for low cobalt thickness (0.02 nm - 0.06 nm) the Co forms islands distributed non-homogeneously which are strongly oxidized under exposure to air to form cobalt oxides. At greater thicknesses up to 2 nm the upper Co-layers are similarly oxidized whereas the lower layers contacting the graphene remain metallic. The measurements indicate a Co2+ oxidation state with no evidence of a 3+ state appearing at any Co thickness, consistent with CoO and Co[OH]2. The results show that thicker Co (2nm) coverage induces the formation of a protective oxide layer while providing the magnetic properties of Co nanoparticles.
The effect of oxygen adsorption on the local structure and electronic properties of monolayer graphene grown on SiC(0001) has been studied by means of Low Energy Electron Microscopy (LEEM), microprobe Low Energy Electron Diffraction (muLEED) and microprobe Angle Resolved Photoemission (muARPES). We show that the buffer layer of epitaxial graphene on SiC(0001) is partially decoupled after oxidation. The monitoring of the oxidation process demonstrates that the oxygen saturates the Si dangling bonds, breaks some Si-C bonds at the interface and intercalates the graphene layer. Accurate control over the oxidation parameters enables us to tune the charge density modulation in the layer.
Near infrared pump-probe spectroscopy has been used to measure the ultrafast dynamics of photoexcited charge carriers in monolayer and multilayer graphene. We observe two decay processes occurring on 100 fs and 2 ps timescales. The first is attributed to the rapid electron-phonon thermalisation in the system. The second timescale is found to be due to the slow decay of hot phonons. Using a simple theoretical model we calculate the hot phonon decay rate and show that it is significantly faster in monolayer flakes than in multilayer ones. In contrast to recent claims, we show that this enhanced decay rate is not due to the coupling to substrate phonons, since we have also seen the same effect in suspended flakes. Possible intrinsic decay mechanisms that could cause such an effect are discussed.
We develop a strategy for graphene growth on Ru(0001) followed by silicon-layer intercalation that not only weakens the interaction of graphene with the metal substrate but also retains its superlative properties. This G/Si/Ru architecture, produced by silicon-layer intercalation approach (SIA), was characterized by scanning tunneling microscopy/spectroscopy and angle resolved electron photoemission spectroscopy. These experiments show high structural and electronic qualities of this new composite. The SIA allows for an atomic control of the distance between the graphene and the metal substrate that can be used as a top gate. Our results show potential for the next generation of graphene-based materials with tailored properties.
In this study, we first show that the argon flow during epitaxial graphene growth is an important parameter to control the quality of the buffer and the graphene layer. Atomic force microscopy (AFM) and low-energy electron diffraction (LEED) measurements reveal that the decomposition of the SiC substrate strongly depends on the Ar mass flow rate while pressure and temperature are kept constant. Our data are interpreted by a model based on the competition of the SiC decomposition rate, controlled by the Ar flow, with a uniform graphene buffer layer formation under the equilibrium process at the SiC surface. The proper choice of a set of growth parameters allows the growth of defect-free, ultra-smooth and coherent graphene-free buffer layer and bilayer-free monolayer graphene sheets which can be transformed into large-area high-quality quasi-freestanding monolayer and bilayer graphene (QFMLG and QFBLG) by hydrogen intercalation. AFM, scanning tunneling microscopy (STM), Raman spectroscopy and electronic transport measurements underline the excellent homogeneity of the resulting quasi-freestanding layers. Electronic transport measurements in four-point probe configuration reveal a homogeneous low resistance anisotropy on both {mu}m- and mm scales.