Do you want to publish a course? Click here

Threshold Model for Triggered Avalanches on Networks

107   0   0.0 ( 0 )
 Added by Filippo Petroni
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Based on a theoretical model for opinion spreading on a network, through avalanches, the effect of external field is now considered, by using methods from non-equilibrium statistical mechanics. The original part contains the implementation that the avalanche is only triggered when a local variable (a so called awareness) reaches and goes above a threshold. The dynamical rules are constrained to be as simple as possible, in order to sort out the basic features, though more elaborated variants are proposed. Several results are obtained for a Erdos-Renyi network and interpreted through simple analytical laws, scale free or logistic map-like, i.e., (i) the sizes, durations, and number of avalanches, including the respective distributions, (ii) the number of times the external field is applied to one possible node before all nodes are found to be above the threshold, (iii) the number of nodes still below the threshold and the number of hot nodes (close to threshold) at each time step.



rate research

Read More

An avalanche or cascade occurs when one event causes one or more subsequent events, which in turn may cause further events in a chain reaction. Avalanching dynamics are studied in many disciplines, with a recent focus on average avalanche shapes, i.e., the temporal profiles that characterize the growth and decay of avalanches of fixed duration. At the critical point of the dynamics the average avalanche shapes for different durations can be rescaled so that they collapse onto a single universal curve. We apply Markov branching process theory to derive a simple equation governing the average avalanche shape for cascade dynamics on networks. Analysis of the equation at criticality demonstrates that nonsymmetric average avalanche shapes (as observed in some experiments) occur for certain combinations of dynamics and network topology; specifically, on networks with heavy-tailed degree distributions. We give examples using numerical simulations of models for information spreading, neural dynamics, and behaviour adoption and we propose simple experimental tests to quantify whether cascading systems are in the critical state.
The Susceptible-Infected-Susceptible model is a canonical model for emerging disease outbreaks. Such outbreaks are naturally modeled as taking place on networks. A theoretical challenge in network epidemiology is the dynamic correlations coming from that if one node is occupied, or infected (for disease spreading models), then its neighbors are likely to be occupied. By combining two theoretical approaches---the heterogeneous mean-field theory and the effective degree method---we are able to include these correlations in an analytical solution of the SIS model. We derive accurate expressions for the average prevalence (fraction of infected) and epidemic threshold. We also discuss how to generalize the approach to a larger class of stochastic population models.
Neural avalanches are collective firings of neurons that exhibit emergent scale-free behavior. Understanding the nature and distribution of these avalanches is an important element in understanding how the brain functions. We study a model of neural avalanches for which the dynamics are governed by neutral theory. The neural avalanches are defined using causal connections between the firing neurons. We analyze the scaling of causal neural avalanches as the critical point is approached from the absorbing phase. By using cluster analysis tools from percolation theory, we characterize the critical properties of the neural avalanches. We identify the tuning parameters consistent with experiments. The scaling hypothesis provides a unified explanation of the power laws which characterize the critical point. The critical exponents characterizing the avalanche distributions and divergence of the response functions are consistent with the predictions of the scaling hypothesis. We use a universal scaling function for the avalanche profile to find that the firing rates for avalanches of different durations show data collapse after appropriate rescaling. We also find data collapse for the avalanche distribution functions, which is stronger evidence of criticality than just the existence of power laws. Critical slowing-down and power law relaxation of avalanches is observed as the system is tuned to its critical point. We discuss how our results motivate future empirical studies of criticality in the brain.
Productive societies feature high levels of cooperation and strong connections between individuals. Public Goods Games (PGGs) are frequently used to study the development of social connections and cooperative behavior in model societies. In such games, contributions to the public good are made only by cooperators, while all players, including defectors, can reap public goods benefits. Classic results of game theory show that mutual defection, as opposed to cooperation, is the Nash Equilibrium of PGGs in well-mixed populations, where each player interacts with all others. In this paper, we explore the coevolutionary dynamics of a low information public goods game on a network without spatial constraints in which players adapt to their environment in order to increase individual payoffs. Players adapt by changing their strategies, either to cooperate or to defect, and by altering their social connections. We find that even if players do not know other players strategies and connectivity, cooperation can arise and persist despite large short-term fluctuations.
89 - Shogo Mizutaka 2018
In this paper, a simple dynamical model in which fractal networks are formed by self-organized critical (SOC) dynamics is proposed; the proposed model consists of growth and collapse processes. It has been shown that SOC dynamics are realized by the combined processes in the model. Thus, the distributions of the cluster size and collapse size follow a power-law function in the stationary state. Moreover, through SOC dynamics, the networks become fractal in nature. The criticality of SOC dynamics is the same as the universality class of mean-field theory. The model explains the possibility that the fractal nature in complex networks emerges by SOC dynamics in a manner similar to the case with fractal objects embedded in a Euclidean space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا