Do you want to publish a course? Click here

Determining Fuchsian groups by their finite quotients

193   0   0.0 ( 0 )
 Added by Martin R. Bridson
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

Let $C(Gamma)$ be the set of isomorphism classes of the finite groups that are homomorphic images of $Gamma$. We investigate the extent to which $C(Gamma)$ determines $Gamma$ when $Gamma$ is a group of geometric interest. If $Gamma_1$ is a lattice in ${rm{PSL}}(2,R)$ and $Gamma_2$ is a lattice in any connected Lie group, then $C(Gamma_1) = C(Gamma_2)$ implies that $Gamma_1$ is isomorphic to $Gamma_2$. If $F$ is a free group and $Gamma$ is a right-angled Artin group or a residually free group (with one extra condition), then $C(F)=C(Gamma)$ implies that $FcongGamma$. If $Gamma_1<{rm{PSL}}(2,Bbb C)$ and $Gamma_2< G$ are non-uniform arithmetic lattices, where $G$ is a semi-simple Lie group with trivial centre and no compact factors, then $C(Gamma_1)= C(Gamma_2)$ implies that $G cong {rm{PSL}}(2,Bbb C)$ and that $Gamma_2$ belongs to one of finitely many commensurability classes. These results are proved using the theory of profinite groups; we do not exhibit explicit finite quotients that distinguish among the groups in question. But in the special case of two non-isomorphic triangle groups, we give an explicit description of finite quotients that distinguish between them.



rate research

Read More

We prove that the profinite completion of the fundamental group of a compact 3-manifold $M$ satisfies a Tits alternative: if a closed subgroup $H$ does not contain a free pro-$p$ subgroup for any $p$, then $H$ is virtually soluble, and furthermore of a very particular form. In particular, the profinite completion of the fundamental group of a closed, hyperbolic 3-manifold does not contain a subgroup isomorphic to $hat{mathbb{Z}}^2$. This gives a profinite characterization of hyperbolicity among irreducible 3-manifolds. We also characterize Seifert fibred 3-manifolds as precisely those for which the profinite completion of the fundamental group has a non-trivial procyclic normal subgroup. Our techniques also apply to hyperbolic, virtually special groups, in the sense of Haglund and Wise. Finally, we prove that every finitely generated pro-$p$ subgroup of the profinite completion of a torsion-free, hyperbolic, virtually special group is free pro-$p$.
We show that low-density random quotients of cubulated hyperbolic groups are again cubulated (and hyperbolic). Ingredients of the proof include cubical small-cancellation theory, the exponential growth of conjugacy classes, and the statement that hyperplane stabilizers grow exponentially more slowly than the ambient cubical group.
These notes are devoted to lattices in products of trees and related topics. They provide an introduction to the construction, by M. Burger and S. Mozes, of examples of such lattices that are simple as abstract groups. Two features of that construction are emphasized: the relevance of non-discrete locally compact groups, and the two-step strategy in the proof of simplicity, addressing separately, and with completely different methods, the existence of finite and infinite quotients. A brief history of the quest for finitely generated and finitely presented infinite simple groups is also sketched. A comparison with Margulis proof of Knesers simplicity conjecture is discussed, and the relevance of the Classification of the Finite Simple Groups is pointed out. A final chapter is devoted to finite and infinite quotients of hyperbolic groups and their relation to the asymptotic properties of the finite simple groups. Numerous open problems are discussed along the way.
We construct several series of explicit presentations of infinite hyperbolic groups enjoying Kazhdans property (T). Some of them are significantly shorter than the previously known shortest examples. Moreover, we show that some of those hyperbolic Kazhdan groups possess finite simple quotient groups of arbitrarily large rank; they constitute the first known specimens combining those properties. All the hyperbolic groups we consider are non-positively curved k-fold generalized triangle groups, i.e. groups that possess a simplicial action on a CAT(0) triangle complex, which is sharply transitive on the set of triangles, and such that edge-stabilizers are cyclic of order k.
We abstract the notion of an A/QI triple from a number of examples in geometric group theory. Such a triple (G,X,H) consists of a group G acting on a Gromov hyperbolic space X, acylindrically along a finitely generated subgroup H which is quasi-isometrically embedded by the action. Examples include strongly quasi-convex subgroups of relatively hyperbolic groups, convex cocompact subgroups of mapping class groups, many known convex cocompact subgroups of Out(Fn), and groups generated by powers of independent loxodromic WPD elements of a group acting on a Gromov hyperbolic space. We initiate the study of intersection and combination properties of A/QI triples. Under the additional hypothesis that G is finitely generated, we use a method of Sisto to show that H is stable. We apply theorems of Kapovich--Rafi and Dowdall--Taylor to analyze the Gromov boundary of an associated cone-off. We close with some examples and questions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا