Do you want to publish a course? Click here

Discovery and Observations of ASASSN-13db, an EX Lupi-Type Accretion Event on a Low-Mass T Tauri Star

180   0   0.0 ( 0 )
 Added by Thomas Holoien
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss ASASSN-13db, an EX Lupi-type (EXor) accretion event on the young stellar object (YSO) SDSS J051011.01$-$032826.2 (hereafter SDSSJ0510) discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN). Using archival photometric data of SDSSJ0510 we construct a pre-outburst spectral energy distribution (SED) and find that it is consistent with a low-mass class II YSO near the Orion star forming region ($d sim 420$ pc). We present follow-up photometric and spectroscopic observations of the source after the $Delta V sim-$5.4 magnitude outburst that began in September 2013 and ended in early 2014. These data indicate an increase in temperature and luminosity consistent with an accretion rate of $sim10^{-7}$ $rm{M}_odot$ yr$^{-1}$, three or more orders of magnitude greater than in quiescence. Spectroscopic observations show a forest of narrow emission lines dominated by neutral metallic lines from Fe I and some low-ionization lines. The properties of ASASSN-13db are similar to those of the EXor prototype EX Lupi during its strongest observed outburst in late 2008.



rate research

Read More

We present high spectral resolution ($Rapprox108,000$) Stokes $V$ polarimetry of the Classical T Tauri stars (CTTSs) GQ Lup and TW Hya obtained with the polarimetric upgrade to the HARPS spectrometer on the ESO 3.6 m telescope. We present data on both photospheric lines and emission lines, concentrating our discussion on the polarization properties of the ion{He}{1} emission lines at 5876 AA and 6678 AA. The ion{He}{1} lines in these CTTSs contain both narrow emission cores, believed to come from near the accretion shock region on these stars, and broad emission components which may come from either a wind or the large scale magnetospheric accretion flow. We detect strong polarization in the narrow component of the two ion{He}{1} emission lines in both stars. We observe a maximum implied field strength of $6.05 pm 0.24$ kG in the 5876 AA line of GQ Lup, making it the star with the highest field strength measured in this line for a CTTS. We find field strengths in the two ion{He}{1} lines that are consistent with each other, in contrast to what has been reported in the literature on at least one star. We do not detect any polarization in the broad component of the ion{He}{1} lines on these stars, strengthening the conclusion that they form over a substantially different volume relative the formation region of the narrow component of the ion{He}{1} lines.
ASASSN-13db is a M5-type star with a protoplanetary disk, the lowest mass star known to experience accretion outbursts. Since its discovery in 2013, it has experienced two outbursts, the second of which started in November 2014 and lasted until February 2017. We use high- and low-resolution spectroscopy and time-resolved photometry from the ASAS-SN survey, the LCOGT and the Beacon Observatory to study the lightcurve and the dynamical and physical properties of the accretion flow. The 2014-2017 outburst lasted for nearly 800 days. A 4.15d period in the lightcurve likely corresponds to rotational modulation of a star with hot spot(s). The spectra show multiple emission lines with variable inverse P-Cygni profiles and a highly variable blueshifted absorption below the continuum. Line ratios from metallic emission lines (Fe I/Fe II, Ti I/Ti II) suggest temperatures of $sim$5800-6000 K in the accretion flow. Photometrically and spectroscopically, the 2014-2017 event displays an intermediate behavior between EXors and FUors. The accretion rate (.{M}=1-3$times$10$^{-7}$M$_odot$/yr), about 2 orders of magnitude higher than the accretion rate in quiescence, is not significantly different from the accretion rate observed in 2013. The absorption features in the spectra suggest that the system is viewed at a high angle and drives a powerful, non-axisymmetric wind, maybe related to magnetic reconnection. The properties of ASASSN-13db suggest that temperatures lower than those for solar-type stars are needed for modeling accretion in very low-mass systems. Finally, the rotational modulation during the outburst reveals that accretion-related structures settled after the begining of the outburst and can be relatively stable and long-lived. Our work also demonstrates the power of time-resolved photometry and spectroscopy to explore the properties of variable and outbursting stars. (Abridged).
Context. Classical T Tauri stars (cTTs) are pre-main sequence stars surrounded by an accretion disk. They host a strong magnetic field, and both magnetospheric accretion and ejection processes develop as the young magnetic star interacts with its disk. Studying this interaction is a major goal toward understanding the properties of young stars and their evolution. Aims. The goal of this study is to investigate the accretion process in the young stellar system HQ Tau, an intermediate-mass T Tauri star (1.9 M$_{odot}$). Methods. The time variability of the system is investigated both photometrically, using Kepler-K2 and complementary light curves, and from a high-resolution spectropolarimetric time series obtained with ESPaDOnS at CFHT. Results. The quasi-sinusoidal Kepler-K2 light curve exhibits a period of 2.424 d, which we ascribe to the rotational period of the star. The radial velocity of the system shows the same periodicity, as expected from the modulation of the photospheric line profiles by surface spots. A similar period is found in the red wing of several emission lines (e.g., HI, CaII, NaI), due to the appearance of inverse P Cygni components, indicative of accretion funnel flows. Signatures of outflows are also seen in the line profiles, some being periodic, others transient. The polarimetric analysis indicates a complex, moderately strong magnetic field which is possibly sufficient to truncate the inner disk close to the corotation radius, r$_{cor}$ $sim$3.5 R$_{star}$. Additionally, we report HQ Tau to be a spectroscopic binary candidate whose orbit remains to be determined. Conclusions. The results of this study expand upon those previously reported for low-mass T Tauri stars, as they indicate that the magnetospheric accretion process may still operate in intermediate-mass pre-main sequence stars, such as HQ Tau.
From observations collected with the ESPaDOnS and NARVAL spectropolarimeters, we report the detection of Zeeman signatures on the classical T Tauri star BP Tau. Circular polarisation signatures in photospheric lines and in narrow emission lines tracing magnetospheric accretion are monitored throughout most of the rotation cycle of BP Tau at two different epochs in 2006. We observe that rotational modulation dominates the temporal variations of both unpolarised and circularly polarised spectral proxies tracing the photosphere and the footpoints of accretion funnels. From the complete data sets at each epoch, we reconstruct the large-scale magnetic topology and the location of accretion spots at the surface of BP Tau using tomographic imaging. We find that the field of BP Tau involves a 1.2 kG dipole and 1.6 kG octupole, both slightly tilted with respect to the rotation axis. Accretion spots coincide with the two main magnetic poles at high latitudes and overlap with dark photospheric spots; they cover about 2% of the stellar surface. The strong mainly-axisymmetric poloidal field of BP Tau is very reminiscent of magnetic topologies of fully-convective dwarfs. It suggests that magnetic fields of fully-convective cTTSs such as BP Tau are likely not fossil remants, but rather result from vigorous dynamo action operating within the bulk of their convective zones. Preliminary modelling suggests that the magnetosphere of BP Tau extends to distances of at least 4 R* to ensure that accretion spots are located at high latitudes, and is not blown open close to the surface by a putative stellar wind. It apparently succeeds in coupling to the accretion disc as far out as the corotation radius, and could possibly explain the slow rotation of BP Tau.
We present a detailed study of the 2016 eruption of nova V407 Lupi (ASASSN-16kt), including optical, near-infrared, X-ray, and ultraviolet data from SALT, SMARTS, SOAR, Chandra, Swift, and XMM-Newton. Timing analysis of the multiwavelength light-curves shows that, from 168 days post-eruption and for the duration of the X-ray supersoft source phase, two periods at 565 s and 3.57 h are detected. We suggest that these are the rotational period of the white dwarf and the orbital period of the binary, respectively, and that the system is likely to be an intermediate polar. The optical light-curve decline was very fast ($t_2 leq$ 2.9 d), suggesting that the white dwarf is likely massive ($gtrsim 1.25$ M$_{odot}$). The optical spectra obtained during the X-ray supersoft source phase exhibit narrow, complex, and moving emission lines of He II, also characteristics of magnetic cataclysmic variables. The optical and X-ray data show evidence for accretion resumption while the X-ray supersoft source is still on, possibly extending its duration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا