Do you want to publish a course? Click here

Charge Pumping Through a Single Donor Atom

240   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Presented in this paper is a proof-of-concept for a new approach to single electron pumping based on a Single Atom Transistor (SAT). By charge pumping electrons through an isolated dopant atom in silicon, precise currents of up to 160 pA at 1 GHz are generated, even if operating at 4.2 K, with no magnetic field applied, and only when one barrier is addressed by sinusoidal voltage cycles.



rate research

Read More

The Kondo effect has been observed in a single gate-tunable atom. The measurement device consists of a single As dopant incorporated in a Silicon nanostructure. The atomic orbitals of the dopant are tunable by the gate electric field. When they are tuned such that the ground state of the atomic system becomes a (nearly) degenerate superposition of two of the Silicon valleys, an exotic and hitherto unobserved valley Kondo effect appears. Together with the regular spin Kondo, the tunable valley Kondo effect allows for reversible electrical control over the symmetry of the Kondo ground state from an SU(2)- to an SU(4) -configuration.
We demonstrate single-electron pumping in a gate-defined carbon nanotube double quantum dot. By periodic modulation of the potentials of the two quantum dots we move the system around charge triple points and transport exactly one electron or hole per cycle. We investigate the pumping as a function of the modulation frequency and amplitude and observe good current quantization up to frequencies of 18 MHz where rectification effects cause the mechanism to break down.
Controlled charge pumping in an AlGaAs/GaAs gated nanowire by single-parameter modulation is studied experimentally and theoretically. Transfer of integral multiples of the elementary charge per modulation cycle is clearly demonstrated. A simple theoretical model shows that such a quantized current can be generated via loading and unloading of a dynamic quasi-bound state. It demonstrates that non-adiabatic blockade of unwanted tunnel events can obliterate the requirement of having at least two phase-shifted periodic signals to realize quantized pumping. The simple configuration without multiple pumping signals might find wide application in metrological experiments and quantum electronics.
We investigate charge and spin transport through an adiabatically driven, strongly interacting quantum dot weakly coupled to two metallic contacts with finite bias voltage. Within a kinetic equation approach, we identify coefficients of response to the time-dependent external driving and relate these to the concepts of charge and spin emissivities previously discussed within the time-dependent scattering matrix approach. Expressed in terms of auxiliary vector fields, the response coefficients allow for a straightforward analysis of recently predicted interaction-induced pumping under periodic modulation of the gate and bias voltage [Phys. Rev. Lett. 104, 226803 (2010)]. We perform a detailed study of this effect and the related adiabatic Coulomb blockade spectroscopy, and, in particular, extend it to spin pumping. Analytic formulas for the pumped charge and spin in the regimes of small and large driving amplitude are provided for arbitrary bias. In the absence of a magnetic field, we obtain a striking, simple relation between the pumped charge at zero bias and at bias equal to the Coulomb charging energy. At finite magnetic field, there is a possibility to have interaction-induced pure spin pumping at this finite bias value, and generally, additional features appear in the pumped charge. For large-amplitude adiabatic driving, the magnitude of both the pumped charge and spin at the various resonances saturate at values which are independent of the specific shape of the pumping cycle. Each of these values provide an independent, quantitative measurement of the junction asymmetry.
The adiabatic charge pumping of a non-equilibrium state of spinless fermions in a one-dimensional lattice is investigated, with an emphasis placed on its usefulness in revealing many-body interaction effects on interband coherence. For a non-interacting system, the pumped charge per adiabatic cycle depends not only on the topology of the occupied bands but also on the interband coherence in the initial state. This insight leads to an interesting opportunity for quantitatively observing how quantum coherence is affected by many-body interaction that is switched on for a varying duration prior to adiabatic pumping. In particular, interband coherence effects can be clearly observed by adjusting the switch-on rates with different adiabatic pumping protocols and by scanning the duration of many-body interaction prior to adiabatic pumping. The time dependence of single-particle interband coherence in the presence of many-body interaction can then be examined in detail. As a side but interesting result, for relatively weak interaction strength, it is found that the difference in the pumped charges between different pumping protocols vanishes if a coherence measure defined from the single-particle density matrix in the sublattice representation reaches its local minima. Our results hence provide an interesting means to quantitatively probe the dynamics of quantum coherence in the presence of many-body interaction (e.g., in a thermalization process).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا