Do you want to publish a course? Click here

A Theory for the Excitation of CO in Star Forming Galaxies

213   0   0.0 ( 0 )
 Added by Desika Narayanan
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations of molecular gas in high-z star-forming galaxies typically rely on emission from CO lines arising from states with rotational quantum numbers J > 1. Converting these observations to an estimate of the CO J=1-0 intensity, and thus inferring H2 gas masses, requires knowledge of the CO excitation ladder, or spectral line energy distribution (SLED). The few available multi-J CO observations of galaxies show a very broad range of SLEDs, even at fixed galaxy mass and star formation rate, making the conversion to J=1-0 emission and hence molecular gas mass highly uncertain. Here, we combine numerical simulations of disk galaxies and galaxy mergers with molecular line radiative transfer calculations to develop a model for the physical parameters that drive variations in CO SLEDs in galaxies. An essential feature of our model is a fully self-consistent computation of the molecular gas temperature and excitation structure. We find that, while the shape of the SLED is ultimately determined by difficult-to-observe quantities such as the gas density, temperature, and optical depth distributions, all of these quantities are well-correlated with the galaxys mean star formation rate surface density (Sigma_SFR), which is observable. We use this result to develop a model for the CO SLED in terms of Sigma_SFR, and show that this model quantitatively reproduces the SLEDs of galaxies over a dynamic range of ~200 in SFR surface density, at redshifts from z=0-6. This model should make it possible to significantly reduce the uncertainty in deducing molecular gas masses from observations of high-J CO emission.



rate research

Read More

With a goal toward deriving the physical conditions in external galaxies, we present a study of the ammonia (NH$_3$) emission and absorption in a sample of star forming systems. Using the unique sensitivities to kinetic temperature afforded by the excitation characteristics of several inversion transitions of NH$_3$, we have continued our characterization of the dense gas in star forming galaxies by measuring the kinetic temperature in a sample of 23 galaxies and one galaxy offset position selected for their high infrared luminosity. We derive kinetic temperatures toward 13 galaxies, 9 of which possess multiple kinetic temperature and/or velocity components. Eight of these galaxies exhibit kinetic temperatures $>100$ K, which are in many cases at least a factor of two larger than kinetic temperatures derived previously. Furthermore, the derived kinetic temperatures in our galaxy sample, which are in many cases at least a factor of two larger than derived dust temperatures, point to a problem with the common assumption that dust and gas kinetic temperatures are equivalent. As previously suggested, the use of dust emission at wavelengths greater than 160 $mu$m to derive dust temperatures, or dust heating from older stellar populations, may be skewing derived dust temperatures in these galaxies to lower values. We confirm the detection of high-excitation OH $^2Pi_{3/2}$ J=9/2 absorption toward Arp220 (Ott et. al. 2011). We also report the first detections of non-metastable NH$_3$ inversion transitions toward external galaxies in the (2,1) (NGC253, NGC660, IC342, and IC860), (3,1), (3,2), (4,3), (5,4) (all in NGC660) and (10,9) (Arp220) transitions.
We describe a weak lensing view of the downsizing of star forming galaxies based on cross correlating a weak lensing ($kappa$) map with a predicted map constructed from a redshift survey. Moderately deep and high resolution images with Subaru/Hyper Suprime-Cam covering the 4 deg^2 DLS F2 field provide a $kappa$ map with 1 arcmin resolution. A dense complete redshift survey of the F2 field including 12,705 galaxies with $Rleq20.6$ is the basis for construction of the predicted map. The zero-lag cross-correlation between the kappa and predicted maps is significant at the $30sigma$ level. The width of the cross-correlation peak is comparable with the angular scale of rich cluster at $zsim0.3$, the median depth of the redshift survey. Slices of the predicted map in $delta{z} = 0.05$ redshift bins enable exploration of the impact of structure as a function of redshift. The zero-lag normalised cross-correlation has significant local maxima at redshifts coinciding with known massive X-ray clusters. Even in slices where there are no known massive clusters, there is significant signal in the cross-correlation originating from lower mass groups that trace the large-scale of the universe. Spectroscopic $D_n4000$ measurements enable division of the sample into star-forming and quiescent populations. The significance of the cross-correlation with structure containing star-forming galaxies increases with redshift from $5sigma$ at $z = 0.3$ to $7 sigma$ at $z = 0.5$. The weak lensing results are consistent with the downsizing view of galaxy evolution established on the basis of many other independent studies.
A majority of the $gamma$-ray emission from star-forming galaxies is generated by the interaction of high-energy cosmic rays with the interstellar gas and radiation fields. Star-forming galaxies are expected to contribute to both the extragalactic $gamma$-ray background and the IceCube astrophysical neutrino flux. Using roughly 10,years of $gamma$-ray data taken by the {it Fermi} Large Area Telescope, in this study we constrain the $gamma$-ray properties of star-forming galaxies. We report the detection of 11 bona-fide $gamma$-ray emitting galaxies and 2 candidates. Moreover, we show that the cumulative $gamma$-ray emission of below-threshold galaxies is also significantly detected at $sim$5,$sigma$ confidence. The $gamma$-ray luminosity of resolved and unresolved galaxies is found to correlate with the total (8-1000,$mu$m) infrared luminosity as previously determined. Above 1,GeV, the spectral energy distribution of resolved and unresolved galaxies is found to be compatible with a power law with a photon index of $approx2.2-2.3$. Finally, we find that star-forming galaxies account for roughly 5,% and 3,% of the extragalactic $gamma$-ray background and the IceCube neutrino flux, respectively.
We present results from a resolved stellar population search for dwarf satellite galaxies of six nearby (D $<5$ Mpc), sub-Milky-Way mass hosts using deep ($msim27$ mag) optical imaging from the Large Binocular Telescope. We perform image simulations to quantify our detection efficiency for dwarfs over a large range in luminosity and size, and develop a fast catalog-based emulator that includes a treatment of unresolved photometric blending. We discover no new dwarf satellites, but we recover two previously known dwarfs (DDO 113 and LV J1228+4358) with $M_{text{V}}<-12$ that lie in our survey volume. We preview a new theoretical framework to predict satellite luminosity functions using analytic probability distribution functions and apply it to our sample, finding that we predict one fewer classical dwarf and one more faint dwarf ($M_{text{V}}sim-7.5$) than we find in our observational sample (i.e., the observational sample is slightly top-heavy). However, the overall number of dwarfs in the observational sample (2) is in good agreement with the theoretical expectations. Interestingly, DDO 113 shows signs of environmental quenching and LV J1228+4358 is tidally disrupting, suggesting that low-mass hosts may affect their satellites more severely than previously believed.
150 - J.B.Hutchings , L.Bianchi 2014
We use the combined photometric SDSS + GALEX database to look for populations of luminous blue star-forming galaxies. These were initially identified from such a sample at redshifts near 0.4, using SDSS spectra. We make use of the colour index previously defined to separate stars and QSOs, to locate more of these unusual galaxies, to fainter limits. They are found in significant numbers in two different regions of the related colour-magnitude plot. Within these regions, we use the ensemble 7-colour photometry to estimate the populations of blue star-forming galaxies at redshift near 0.4, and at redshift near 1, from a full photometric sample of over half a million, composed mostly of normal galaxies and QSOs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا