No Arabic abstract
The application of the lasso is espoused in high-dimensional settings where only a small number of the regression coefficients are believed to be nonzero. Moreover, statistical properties of high-dimensional lasso estimators are often proved under the assumption that the correlation between the predictors is bounded. In this vein, coordinatewise methods, the most common means of computing the lasso solution, work well in the presence of low to moderate multicollinearity. The computational speed of coordinatewise algorithms degrades however as sparsity decreases and multicollinearity increases. Motivated by these limitations, we propose the novel Deterministic Bayesian Lasso algorithm for computing the lasso solution. This algorithm is developed by considering a limiting version of the Bayesian lasso. The performance of the Deterministic Bayesian Lasso improves as sparsity decreases and multicollinearity increases, and can offer substantial increases in computational speed. A rigorous theoretical analysis demonstrates that (1) the Deterministic Bayesian Lasso algorithm converges to the lasso solution, and (2) it leads to a representation of the lasso estimator which shows how it achieves both $ell_1$ and $ell_2$ types of shrinkage simultaneously. Connections to other algorithms are also provided. The benefits of the Deterministic Bayesian Lasso algorithm are then illustrated on simulated and real data.
A robust estimator is proposed for the parameters that characterize the linear regression problem. It is based on the notion of shrinkages, often used in Finance and previously studied for outlier detection in multivariate data. A thorough simulation study is conducted to investigate: the efficiency with normal and heavy-tailed errors, the robustness under contamination, the computational times, the affine equivariance and breakdown value of the regression estimator. Two classical data-sets often used in the literature and a real socio-economic data-set about the Living Environment Deprivation of areas in Liverpool (UK), are studied. The results from the simulations and the real data examples show the advantages of the proposed robust estimator in regression.
Among the most popular variable selection procedures in high-dimensional regression, Lasso provides a solution path to rank the variables and determines a cut-off position on the path to select variables and estimate coefficients. In this paper, we consider variable selection from a new perspective motivated by the frequently occurred phenomenon that relevant variables are not completely distinguishable from noise variables on the solution path. We propose to characterize the positions of the first noise variable and the last relevant variable on the path. We then develop a new variable selection procedure to control over-selection of the noise variables ranking after the last relevant variable, and, at the same time, retain a high proportion of relevant variables ranking before the first noise variable. Our procedure utilizes the recently developed covariance test statistic and Q statistic in post-selection inference. In numerical examples, our method compares favorably with other existing methods in selection accuracy and the ability to interpret its results.
Comment on ``Gibbs Sampling, Exponential Families, and Orthogonal Polynomials [arXiv:0808.3852]
The issue of honesty in constructing confidence sets arises in nonparametric regression. While optimal rate in nonparametric estimation can be achieved and utilized to construct sharp confidence sets, severe degradation of confidence level often happens after estimating the degree of smoothness. Similarly, for high-dimensional regression, oracle inequalities for sparse estimators could be utilized to construct sharp confidence sets. Yet the degree of sparsity itself is unknown and needs to be estimated, causing the honesty problem. To resolve this issue, we develop a novel method to construct honest confidence sets for sparse high-dimensional linear regression. The key idea in our construction is to separate signals into a strong and a weak group, and then construct confidence sets for each group separately. This is achieved by a projection and shrinkage approach, the latter implemented via Stein estimation and the associated Stein unbiased risk estimate. Our confidence set is honest over the full parameter space without any sparsity constraints, while its diameter adapts to the optimal rate of $n^{-1/4}$ when the true parameter is indeed sparse. Through extensive numerical comparisons, we demonstrate that our method outperforms other competitors with big margins for finite samples, including oracle methods built upon the true sparsity of the underlying model.
Wavelet shrinkage estimators are widely applied in several fields of science for denoising data in wavelet domain by reducing the magnitudes of empirical coefficients. In nonparametric regression problem, most of the shrinkage rules are derived from models composed by an unknown function with additive gaussian noise. Although gaussian noise assumption is reasonable in several real data analysis, mainly for large sample sizes, it is not general. Contaminated data with positive noise can occur in practice and nonparametric regression models with positive noise bring challenges in wavelet shrinkage point of view. This work develops bayesian shrinkage rules to estimate wavelet coefficients from a nonparametric regression framework with additive and strictly positive noise under exponential and lognormal distributions. Computational aspects are discussed and simulation studies to analyse the performances of the proposed shrinkage rules and compare them with standard techniques are done. An application in winning times Boston Marathon dataset is also provided.