New high-resolution maps with the IRAM Interferometer of the redshifted [C II] 158 micron line and the 0.98mm dust continuum of HDF850.1 at z = 5.185 show the source to have a blueshifted northern component and a redshifted southern component, with a projected separation of 0.3 arcsec, or 2 kpc. We interpret these components as primordial galaxies that are merging to form a larger galaxy. We think it is the resulting merger-driven starburst that makes HDF850.1 an ultraluminous infrared galaxy, with an L(IR) of 1E13 Lsun. The observed line and continuum brightness temperatures and the constant line-to-continuum ratio across the source imply (1) high [C II] line optical depth, (2) a [C II] excitation temperature of the same order as the dust temperature, and (3) dust continuum emission that is nearly optically thick at 158 microns. These conclusions for HDF850.1 probably also apply to other high-redshift submillimeter galaxies and quasar hosts in which the [C II] 158 micron line has been detected, as indicated by their roughly constant [C II]-to-158 micron continuum ratios, in sharp contrast to the large dispersion in their [C II]-to-FIR luminosity ratios. In brightness temperature units, the [C II] line luminosity is about the same as the predicted CO(1-0) luminosity, implying that the [C II] line can also be used to estimate the molecular gas mass, with the same assumptions as for CO.