Do you want to publish a course? Click here

Multi-frequency linear and circular radio polarization monitoring of jet emission elements in $Fermi$ blazars

116   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Radio emission in blazars -- the aligned subset of Active Galactic Nuclei (AGN) -- is produced by synchrotron electrons moving relativistically in their jets magnetic field. Under the assumption of some degree of uniformity of the field, the emission can be highly polarized -- linearly and circularly. In the radio regime, the observed variability is in most of the cases attributed to flaring events undergoing opacity evolution, i.e. transitions from optically thick to thin emission (or vice versa). These transistions have a specific signature in the polarization parameter space (angle and magnitude) which can be traced with high cadence polarization monitoring and provide us with a unique probe of the microphysics of the emitting region. Here we present the full Stokes analysis of radio emission from blazars observed in the framework of the F-GAMMA program and discuss the case study of PKS,1510$-$089 which has shown a prominent polarization event around MJD 55900.



rate research

Read More

Radio polarimetry is an invaluable tool to investigate the physical conditions and variability processes in active galactic nuclei (AGN) jets. However, detecting their linear and circular polarization properties is a challenging endeavor due to their low levels and possible depolarization effects. We have developed an end-to-end data analysis methodology to recover the polarization properties of unresolved sources with high accuracy. It has been applied to recover the linear and circular polarization of 87 AGNs measured by the F-GAMMA program from July 2010 to January 2015 with a mean cadence of 1.3 months. Their linear polarization was recovered at four frequencies between 2.64 and 10.45 GHz and the circular polarization at 4.85 and 8.35 GHz. The physical conditions required to reproduce the observed polarization properties and the processes which induce their variability were investigated with a full-Stokes radiative transfer code which emulates the synchrotron emission of modeled jets. The model was used to investigate the conditions needed to reproduce the observed polarization behavior for the blazar 3C 454.3, assuming that the observed variability is attributed to evolving internal shocks propagating downstream.
We present a multi-frequency, dense radio monitoring program of the blazar OJ287 using the 100m Effelsberg radio telescope. We analyze the evolution in total flux density, linear and circular polarization to study the jet structure and its magnetic field geometry. The total flux density is measured at nine bands from 2.64 GHz to 43 GHz, the linear polarization parameters between 2.64 GHz and 10.45 GHz, and the circular polarization at 4.85 GHz and 8.35 GHz. The mean cadence is 10 days. Between MJD 57370 and 57785, OJ287 showed flaring activity and complex linear and circular polarization behavior. The radio EVPA showed a large clockwise (CW) rotation by ~340$^{circ}$ with a mean rate of -1.04 $^{circ}$/day. Based on concurrent VLBI data, the rotation seems to originate within the jet core at 43 GHz (projected size $le$ 0.15 mas or 0.67 pc). Moreover, optical data show a similar monotonic CW EVPA rotation with a rate of about -1.1 $^{circ}$/day which is superposed with shorter and faster rotations of about 7.8 $^{circ}$/day. The observed variability is consistent with a polarized emission component propagating on a helical trajectory within a bent jet. We constrained the helix arc length to 0.26 pc and radius to $le$ 0.04 pc as well as the jet bending arc length projected on the plane of the sky to $le$ 1.9-7.6 pc. A similar bending is observed in high angular resolution VLBI images at the innermost jet regions. Our results indicate also the presence of a stable polarized emission component with EVPA (-10$^{circ}$) perpendicular to the large scale jet, suggesting dominance of the poloidal magnetic field component. Finally, the EVPA rotation begins simultaneously with an optical flare and hence the two might be physically connected. That optical flare has been linked to the interaction of a secondary SMBH with the inner accretion disk or originating in the jet of the primary.
We are leading a comprehensive multi-waveband monitoring program of 34 gamma-ray bright blazars designed to locate the emission regions of blazars from radio to gamma-ray frequencies. The maps are anchored by sequences of images in both total and polarized intensity obtained with the VLBA at an angular resolution of ~ 0.1 milliarcseconds. The time-variable linear polarization at radio to optical wavelengths and radio to gamma-ray light curves allow us to specify the locations of flares relative to bright stationary features seen in the images and to infer the geometry of the magnetic field in different regions of the jet. Our data reveal that some flares occur simultaneously at different wavebands and others are only seen at some of the frequencies. The flares are often triggered by a superluminal knot passing through the stationary core on the VLBA images. Other flares occur upstream or even parsecs downstream of the core.
Time-variable polarization is an extremely valuable observational tool to probe the dynamical physical conditions of blazar jets. Since 2008, we have been monitoring the flux and linear polarization of a sample of gamma-ray bright blazars at optical frequencies. Some of the observations were performed on nightly or intra-night time-scales in four optical bands, providing information on the frequency and time dependence of the polarization. The observed behavior is similar to that found in simulations of turbulent plasma in a relativistic jet that contains a standing shock and/or a helical background magnetic field. Similar simulations predict the characteristics of X-ray synchrotron polarization of blazars that will be measured in the future by the Imaging X-ray Polarimetry Explorer (IXPE).
The advent of the Fermi-GST with its unprecedented capability to monitor the entire 4 pi sky within less than 2-3 hours, introduced new standard in time domain gamma-ray astronomy. To explore this new avenue of extragalactic physics the F-GAMMA programme undertook the task of conducting nearly monthly, broadband radio monitoring of selected blazars from January 2007 to January 2015. In this work we release all the light curves at 2.64, 4.85, 8.35, 10.45, 14.6, 23.05, 32, and 43 GHz and present first order derivative data products after all necessary post-measurement corrections and quality checks; that is flux density moments and spectral indices. The release includes 155 sources. The effective cadence after the quality flagging is around one radio SED every 1.3 months. The coherence of each radio SED is around 40 minutes. The released dataset includes more than $4times10^4$ measurements. The median fractional error at the lowest frequencies (2.64-10.45 GHz) is below 2%. At the highest frequencies (14.6-43 GHz) with limiting factor of the atmospheric conditions, the errors range from 3% to 9%, respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا