Towards superlattices: Lateral bipolar multibarriers in graphene


Abstract in English

We report on transport properties of monolayer graphene with a laterally modulated potential profile, employing striped top gate electrodes with spacings of 100 nm to 200 nm. Tuning of top and back gate voltages gives rise to local charge carrier density disparities, enabling the investigation of transport properties either in the unipolar (nn) or the bipolar (np) regime. In the latter pronounced single- and multibarrier Fabry-Perot (FP) resonances occur. We present measurements of different devices with different numbers of top gate stripes and spacings. The data are highly consistent with a phase coherent ballistic tight binding calculation and quantum capacitance model, whereas a superlattice effect and modification of band structure can be excluded.

Download