We call a metric $m$-quasi-Einstein if $Ric_X^m$ (a modification of the $m$-Bakry-Emery Ricci tensor in terms of a suitable vector field $X$) is a constant multiple of the metric tensor. It is a generalization of Einstein metrics which contains Ricci solitons. In this paper, we focus on left-invariant vector fields and left-invariant Riemannian metrics on quadratic Lie groups. First we prove that any left-invariant vector field $X$ such that the left-invariant Riemannian metric on a quadratic Lie group is $m$-quasi-Einstein is a Killing field. Then we construct infinitely many non-trivial $m$-quasi-Einstein metrics on solvable quadratic Lie groups $G(n)$ for $m$ finite.
We call a metric $m$-quasi-Einstein if $Ric_X^m$, which replaces a gradient of a smooth function $f$ by a vector field $X$ in $m$-Bakry-Emery Ricci tensor, is a constant multiple of the metric tensor. It is a generalization of Einstein metrics which contains Ricci solitons. In this paper, we focus on left-invariant metrics on simple Lie groups. First, we prove that $X$ is a left-invariant Killing vector field if the metric on a compact simple Lie group is $m$-quasi-Einstein. Then we show that every compact simple Lie group admits non-trivial $m$-quasi-Einstein metrics except $SU(3)$, $E_8$ and $G_2$, and most of them admit infinitely many metrics. Naturally, the study on $m$-quasi-Einstein metrics can be extended to pseudo-Riemannian case. And we prove that every compact simple Lie group admits non-trivial $m$-quasi-Einstein Lorentzian metrics and most of them admit infinitely many metrics. Finally, we prove that some non-compact simple Lie groups admit infinitely many non-trivial $m$-quasi-Einstein Lorentzian metrics.
We introduce a systematic method to produce left-invariant, non-Ricci-flat Einstein metrics of indefinite signature on nice nilpotent Lie groups. On a nice nilpotent Lie group, we give a simple algebraic characterization of non-Ricci-flat left-invariant Einstein metrics in both the class of metrics for which the nice basis is orthogonal and a more general class associated to order two permutations of the nice basis. We obtain classifications in dimension 8 and, under the assumption that the root matrix is surjective, dimension 9; moreover, we prove that Einstein nilpotent Lie groups of nonzero scalar curvature exist in every dimension $geq 8$.
In the paper Einstein metrics on compact simple Lie groups attached to standard triples, the authors introduced the definition of standard triples and proved that every compact simple Lie group $G$ attached to a standard triple $(G,K,H)$ admits a left-invariant Einstein metric which is not naturally reductive except the standard triple $(Sp(4),2Sp(2),4Sp(1))$. For the triple $(Sp(4),2Sp(2),4Sp(1))$, we find there exists an involution pair of $sp(4)$ such that $4sp(1)$ is the fixed point of the pair, and then give the decomposition of $sp(4)$ as a direct sum of irreducible $ad(4sp(1))$-modules. But $Sp(4)/4Sp(1)$ is not a generalized Wallach space. Furthermore we give left-invariant Einstein metrics on $Sp(4)$ which are non-naturally reductive and $Ad(4Sp(1))$-invariant. For the general case $(Sp(2n_1n_2),2Sp(n_1n_2),2n_2Sp(n_1))$, there exist $2n_2-1$ involutions of $sp(2n_1n_2)$ such that $2n_2sp(n_1))$ is the fixed point of these $2n_2-1$ involutions, and it follows the decomposition of $sp(2n_1n_2)$ as a direct sum of irreducible $ad(2n_2sp(n_1))$-modules. In order to give new non-naturally reductive and $Ad(2n_2Sp(n_1)))$-invariant Einstein metrics on $Sp(2n_1n_2)$, we prove a general result, i.e. $Sp(2k+l)$ admits at least two non-naturally reductive Einstein metrics which are $Ad(Sp(k)timesSp(k)timesSp(l))$-invariant if $k<l$. It implies that every compact simple Lie group $Sp(n)$ for $ngeq 4$ admits at least $2[frac{n-1}{3}]$ non-naturally reductive left-invariant Einstein metrics.
Based on the representation theory and the study on the involutions of compact simple Lie groups, we show that $F_4$ admits non-naturally reductive Einstein metrics.
We study the Ricci tensor of left-invariant pseudoriemannian metrics on Lie groups. For an appropriate class of Lie groups that contains nilpotent Lie groups, we introduce a variety with a natural $mathrm{GL}(n,mathbb{R})$ action, whose orbits parametrize Lie groups with a left-invariant metric; we show that the Ricci operator can be identified with the moment map relative to a natural symplectic structure. From this description we deduce that the Ricci operator is the derivative of the scalar curvature $s$ under gauge transformations of the metric, and show that Lie algebra derivations with nonzero trace obstruct the existence of Einstein metrics with $s eq0$. Using the notion of nice Lie algebra, we give the first example of a left-invariant Einstein metric with $s eq0$ on a nilpotent Lie group. We show that nilpotent Lie groups of dimension $leq 6$ do not admit such a metric, and a similar result holds in dimension $7$ with the extra assumption that the Lie algebra is nice.