Semidefinite representations of non-compact convex sets


Abstract in English

We consider the problem of the semidefinite representation of a class of non-compact basic semialgebraic sets. We introduce the conditions of pointedness and closedness at infinity of a semialgebraic set and show that under these conditions our modified hierarchies of nested theta bodies and Lasserres relaxations converge to the closure of the convex hull of $S$. Moreover, if the PP-BDR property is satisfied, our theta body and Lasserres relaxation are exact when the order is large enough; if the PP-BDR property does not hold, our hierarchies convergent uniformly to the closure of the convex hull of $S$ restricted to every fixed ball centered at the origin. We illustrate through a set of examples that the conditions of pointedness and closedness are essential to ensure the convergence. Finally, we provide some strategies to deal with cases where the conditions of pointedness and closedness are violated.

Download