Do you want to publish a course? Click here

60Fe-60Ni chronology of core formation in Mars

285   0   0.0 ( 0 )
 Added by Nicolas Dauphas
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The timescales of accretion, core formation, and magmatic differentiation in planetary bodies can be constrained using extinct radionuclide systems. Experiments have shown that Ni becomes more siderophile with decreasing pressure, which is reflected in the progressively higher Fe/Ni ratios in the mantles of Earth, Mars and Vesta. Mars formed rapidly and its mantle has a high Fe/Ni ratio, so the 60Fe-60Ni decay system (t1/2=2.62 Myr) is well suited to establish the timescale of core formation in this object. We report new measurements of 60Ni/58Ni ratios in bulk SNC/martian (Shergotty-Nakhla-Chassigny) meteorites and chondrites. The difference in {epsilon}60Ni values between SNC meteorites and the building blocks of Mars assumed to be chondritic (55 % ordinary chondrites +45% enstatite chondrites) is +0.028+/-0.023 (95% confidence interval). Using a model of growth of planetary embryo, this translates into a time for Mars to have reached ~44 % of its present size of 1.9(-0.8)(+1.7) Myr with a strict lower limit of 1.2 Myr after solar system formation, which agrees with a previous estimate based on 182Hf-182W systematics. The presence of Mars when planetesimals were still being formed may have influenced the formation of chondrules through bow shocks or by inducing collisions between dynamically excited planetesimals. Constraints on the growth of large planetary bodies are scarce and this is a major development in our understanding of the chronology of Mars.



rate research

Read More

We present a chronology of the formation and early evolution of the Oort cloud by simulations. These simulations start with the Solar System being born with planets and asteroids in a stellar cluster orbiting the Galactic center. Upon ejection from its birth environment, we continue to follow the evolution of the Solar System while it navigates the Galaxy as an isolated planetary system. We conclude that the range in semi-major axis between 100au and several 10$^3$,au still bears the signatures of the Sun being born in a 1000MSun/pc$^3$ star cluster, and that most of the outer Oort cloud formed after the Solar System was ejected. The ejection of the Solar System, we argue, happened between 20Myr and 50Myr after its birth. Trailing and leading trails of asteroids and comets along the Suns orbit in the Galactic potential are the by-product of the formation of the Oort cloud. These arms are composed of material that became unbound from the Solar System when the Oort cloud formed. Today, the bulk of the material in the Oort cloud ($sim 70$%) originates from the region in the circumstellar disk that was located between $sim 15$,au and $sim 35$,au, near the current location of the ice giants and the Centaur family of asteroids. According to our simulations, this population is eradicated if the ice-giant planets are born in orbital resonance. Planet migration or chaotic orbital reorganization occurring while the Solar System is still a cluster member is, according to our model, inconsistent with the presence of the Oort cloud. About half the inner Oort cloud, between 100 and $10^4$,au, and a quarter of the material in the outer Oort cloud, $apgt 10^4$,au, could be non-native to the Solar System but was captured from free-floating debris in the cluster or from the circumstellar disk of other stars in the birth cluster.
The history of rivers on Mars is an important constraint on Martian climate evolution. The timing of relatively young, alluvial fan-forming rivers is especially important, as Mars Amazonian atmosphere is thought to have been too thin to consistently support surface liquid water. Previous regional studies suggested that alluvial fans formed primarily between the Early Hesperian and the Early Amazonian. In this study, we describe how a combination of a global impact crater database, a global geologic map, a global alluvial fan database, and statistical models can be used to estimate the timing of alluvial fan formation across Mars. Using our global approach and improved statistical modeling, we find that alluvial fan formation likely persisted into the last ~2.5 Gyr, well into the Amazonian period. However, the data we analyzed was insufficient to place constraints on the duration of alluvial fan formation. Going forward, more crater data will enable tighter constraints on the parameters estimated in our models and thus further inform our understanding of Mars climate evolution.
We discuss the current state of knowledge of terrestrial planet formation from the aspects of different planet formation models and isotopic data from 182Hf-182W, U-Pb, lithophile-siderophile elements, 48Ca/44Ca isotope samples from planetary building blocks, 36Ar/38Ar, 20Ne/22Ne, 36Ar/22Ne isotope ratios in Venus and Earths atmospheres, the expected solar 3He abundance in Earths deep mantle and Earths D/H sea water ratios that shed light on the accretion time of the early protoplanets. Accretion scenarios that can explain the different isotope ratios, including a Moon-forming event after ca. 50 Myr, support the theory that the bulk of Earths mass (>80%) most likely accreted within 10-30 Myr. From a combined analysis of the before mentioned isotopes, one finds that proto-Earth accreted 0.5-0.6 MEarth within the first ~4-5 Myr, the approximate lifetime of the protoplanetary disk. For Venus, the available atmospheric noble gas data are too uncertain for constraining the planets accretion scenario accurately. However, from the available Ar and Ne isotope measurements, one finds that proto-Venus could have grown to 0.85-1.0 MVenus before the disk dissipated. Classical terrestrial planet formation models have struggled to grow large planetary embryos quickly from the tiniest materials within the typical lifetime of protoplanetary disks. Pebble accretion could solve this long-standing time scale controversy. Pebble accretion and streaming instabilities produce large planetesimals that grow into Mars-sized and larger planetary embryos during this early accretion phase. The later stage of accretion can be explained well with the Grand-Tack, annulus or depleted disk models. The relative roles of pebble accretion and planetesimal accretion/giant impacts are poorly understood and should be investigated with N-body simulations that include pebbles and multiple protoplanets.
The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) has returned observations of the Nili Fossae region indicating the presence of Mg- carbonate in small (<10km sq2), relatively bright rock units that are commonly fractured (Ehlmann et al., 2008b). We have analyzed spectra from CRISM images and used co-located HiRISE images in order to further characterize these carbonate-bearing units. We applied absorption band mapping techniques to investigate a range of possible phyllosilicate and carbonate minerals that could be present in the Nili Fossae region. We also describe a clay-carbonate hydrothermal alteration mineral assemblage in the Archean Warrawoona Group of Western Australia that is a potential Earth analog to the Nili Fossae carbonate-bearing rock units. We discuss the geological and biological implications for hydrothermal processes on Noachian Mars.
Iron-60 (t1/2=2.62 Myr) is a short-lived nuclide that can help constrain the astrophysical context of solar system formation and date early solar system events. A high abundance of 60Fe (60Fe/56Fe= 4x10-7) was reported by in situ techniques in some chondrules from the LL3.00 Semarkona meteorite, which was taken as evidence that a supernova exploded in the vicinity of the birthplace of the Sun. However, our previous MC-ICPMS measurements of a wide range of meteoritic materials, including chondrules, showed that 60Fe was present in the early solar system at a much lower level (60Fe/56Fe=10-8). The reason for the discrepancy is unknown but only two Semarkona chondrules were measured by MC-ICPMS and these had Fe/Ni ratios below ~2x chondritic. Here, we show that the initial 60Fe/56Fe ratio in Semarkona chondrules with Fe/Ni ratios up to ~24x chondritic is 5.4x10-9. We also establish the initial 60Fe/56Fe ratio at the time of crystallization of the Sahara 99555 angrite, a chronological anchor, to be 1.97x10-9. These results demonstrate that the initial abundance of 60Fe at solar system birth was low, corresponding to an initial 60Fe/56Fe ratio of 1.01x10-8.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا