Ferromagnetic materials with exchange fields E_ex smaller or of the order of the superconducting gap Delta are important for applications of corresponding (s-wave) superconductor/ ferromagnet/ superconductor (SFS) junctions. Presently such materials are not known but there are several proposals how to create them. Small exchange fields are in principle difficult to detect. Based on our results we propose reliable detection methods of such small E_ex. For exchange fields smaller than the superconducting gap the subgap differential conductance of the normal metal - ferromagnet - insulator - superconductor (NFIS) junction shows a peak at the voltage bias equal to the exchange field of the ferromagnetic layer, eV=E_ex. Thus measuring the subgap conductance one can reliably determine small E_ex < Delta. In the opposite case E_ex > Delta one can determine the exchange field in scanning tunneling microscopy (STM) experiment. The density of states of the FS bilayer measured at the outer border of the ferromagnet shows a peak at the energy equal to the exchange field, E=E_ex. This peak can be only visible for small enough exchange fields of the order of few Delta.