Do you want to publish a course? Click here

Fermi-LAT Detection of Gravitational Lens Delayed Gamma-ray Flares from Blazar B0218+357

119   0   0.0 ( 0 )
 Added by Teddy Cheung
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using data from the Fermi Large Area Telescope (LAT), we report the first clear gamma-ray measurement of a delay between flares from the gravitationally lensed images of a blazar. The delay was detected in B0218+357, a known double-image lensed system, during a period of enhanced gamma-ray activity with peak fluxes consistently observed to reach >20-50 times its previous average flux. An auto-correlation function analysis identified a delay in the gamma-ray data of 11.46 +/- 0.16 days (1 sigma) that is ~1 day greater than previous radio measurements. Considering that it is beyond the capabilities of the LAT to spatially resolve the two images, we nevertheless decomposed individual sequences of superposing gamma-ray flares/delayed emissions. In three such ~8-10 day-long sequences within a ~4-month span, considering confusion due to overlapping flaring emission and flux measurement uncertainties, we found flux ratios consistent with ~1, thus systematically smaller than those from radio observations. During the first, best-defined flare, the delayed emission was detailed with a Fermi pointing, and we observed flux doubling timescales of ~3-6 hrs implying as well extremely compact gamma-ray emitting regions.



rate research

Read More

We present results on multifrequency Very Long Baseline Array (VLBA) monitoring observations of the double-image gravitationally lensed blazar JVAS B0218+357. Multi-epoch observations started less than one month after the gamma-ray flare detected in 2012 by the Large Area Telescope on board Fermi, and spanned a 2-month interval. The radio light curves did not reveal any significant flux density variability, suggesting that no clear correlation between the high energy and low-energy emission is present. This behaviour was confirmed also by the long-term Owens Valley Radio Observatory monitoring data at 15 GHz. The milliarcsecond-scale resolution provided by the VLBA observations allowed us to resolve the two images of the lensed blazar, which have a core-jet structure. No significant morphological variation is found by the analysis of the multi-epoch data, suggesting that the region responsible for the gamma-ray variability is located in the core of the AGN, which is opaque up to the highest observing frequency of 22 GHz.
The gravitational lens toward B0218+357 offers the unique possibility to study cool moderately dense gas with high sensitivity and angular resolution in a cloud that existed half a Hubble time ago. Observations of the radio continuum and six formaldehyde (H2CO) lines were carried out with the VLA, the Plateau de Bure interferometer, and the Effelsberg 100-m telescope. Three radio continuum maps indicate a flux density ratio between the two main images, A and B, of ~ 3.4 +/- 0.2. Within the errors the ratio is the same at 8.6, 14.1, and 43 GHz. The 1_{01}-0_{00} line of para-H2CO is shown to absorb the continuum of image A. Large Velocity Gradient radiative transfer calculations are performed to reproduce the optical depths of the observed two cm-wave K-doublet and four mm-wave rotational lines. These calculations also account for a likely frequency-dependent continuum cloud coverage. Confirming the diffuse nature of the cloud, an n(H2) density of < 1000 cm^{-3} is derived, with the best fit suggesting n(H2) ~ 200 cm^{-3}. The H2CO column density of the main velocity component is ~5 * 10^{13} cm^{-2}, to which about 7.5 * 10^{12} cm^{-2} has to be added to also account for a weaker feature on the blue side, 13 km/s apart. N(H2CO)/N(NH3) ~ 0.6, which is four times less than the average ratio obtained from a small number of local diffuse (galactic) clouds seen in absorption. The ortho-to-para H2CO abundance ratio is 2.0 - 3.0, which is consistent with the kinetic temperature of the molecular gas associated with the lens of B0218+357. With the gas kinetic temperature and density known, it is found that optically thin transitions of CS, HCN, HNC, HCO+, and N2H+ (but not CO) will provide excellent probes of the cosmic microwave background at redshift z=0.68.
Context. QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components, spatially indistinguishable by gamma-ray instruments, but separated by a 10-12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. Aims. The spectral energy distribution of QSO B0218+357 can give information on the energetics of z ~ 1 very high energy gamma- ray sources. Moreover the gamma-ray emission can also be used as a probe of the extragalactic background light at z ~ 1. Methods. MAGIC performed observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data, obtained by Fermi-LAT and MAGIC, are used to set constraints on the extragalactic background light. Results. Very high energy gamma-ray emission was detected from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray sources detected to date. The observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broad band emission can be modeled in the framework of a two zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.
We observed the gravitationally lensed blazar JVAS B0218+357 with the KVN and VERA Array (KaVA) at 22, 43, and 86 GHz. The source has recently been identified as an active gamma-ray source up to GeV/TeV energy bands, rendering a unique target for studying relativistic jets through gravitational lensing. Here we report the first robust VLBI detection and imaging of the lensed images up to 86 GHz. The detected mas-scale/parsec-scale morphology of the individual lensed images (A and B) is consistent with that previously seen at 22 and 15 GHz, showing the core-jet morphology with the jet direction being the same as at the low frequencies. The radio spectral energy distributions of the lensed images become steeper at higher frequencies, indicating that the innermost jet regions become optically thin to synchrotron emission. Our findings confirm that the absorption effects due to the intervening lensing galaxy become negligible at millimeter wavelengths. These results indicate that high-frequency VLBI observations are a powerful tool to better recover the intrinsic properties of lensed active galactic nucleus jets, which therefore allow us to study the interplay between the low- and high-energy emission.
We study the gamma-ray variability of 13 blazars observed with the Fermi Large Area Telescope (LAT). These blazars have the most complete light curves collected during the first 4 years of the Fermi sky survey. We model them with the Ornstein-Uhlenbeck (OU) process or a mixture of the OU processes. The OU process has power spectral density (PSD) proportional to 1/f^alpha with alpha changing at a characteristic time scale, tau_0, from 0 (tau>>tau_0) to 2 (tau<<tau_0). The PSD of the mixed OU process has two characteristic time scales and an additional intermediate region with 0<alpha<2. We show that the OU model provides a good description of the Fermi/LAT light curves of three blazars in our sample. For the first time we constrain a characteristic gamma-ray time scale of variability in two BL Lac sources, 3C 66A and PKS 2155-304 (tau_0=25 day and tau_0=43 day, respectively, in the observers frame), which are longer than the soft X-ray time scales detected in blazars and Seyfert galaxies. We find that the mixed OU process approximates the light curves of the remaining 10 blazars better than the OU process. We derive limits on their long and short characteristic time scales, and infer that their Fermi/LAT PSDs resemble a power-law function. We constrain the PSD slopes for all but one source in the sample. We find hints for sub-hour Fermi/LAT variability in four flat spectrum radio quasars. We discuss the implications of our results for theoretical models of blazar variability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا