No Arabic abstract
Fluorine is a key element for nucleosynthetic studies since it is extremely sensitive to the physical conditions within stars. The astrophysical site to produce fluorine is suggested to be asymptotic giant branch (AGB) stars. In these stars the 15N(n, g)16N reaction could affect the abundance of fluorine by competing with 15N(a, g)19F. The 15N(n, g)16N reaction rate depends directly on the neutron spectroscopic factors of the low-lying states in 16N. The angular distributions of the 15N(7Li, 6Li)16N reaction populating the ground state and the first three excited states in 16N are measured using a Q3D magnetic spectrograph and are used to derive the spectroscopic factors of these states based on distorted wave Born approximation (DWBA) analysis. The spectroscopic factors of these four states are extracted to be 0.96+-0.09, 0.69+-0.09, 0.84+-0.08 and 0.65+-0.08, respectively. Based on the new spectroscopic factors we derive the 15N(n,g)16N reaction rate. The accuracy and precision of the spectroscopic factors are enhanced due to the first application of high-precision magnetic spectrograph for resolving the closely-spaced 16N levels which can not be achieved in most recent measurement. The present result demonstrates that two levels corresponding to neutron transfers to the 2s1/2 orbit in 16N are not so good single-particle levels although 15N is a closed neutron-shell nucleus. This finding is contrary to the shell model expectation. The present work also provides an independent examination to shed some light on the existing discrepancies in the spectroscopic factors and the 15N(n, g)16N rate.
All the 16F levels are unbound by proton emission. To date the four low-lying 16F levels below 1 MeV have been experimentally identified with well established spin-parity values and excitation energies with an accuracy of 4 - 6 keV. However, there are still considerable discrepancies for their level widths. The present work aims to explore these level widths through an independent method. The angular distributions of the 15N(7Li, 6Li)16N reaction leading to the first four states in 16N were measured using a high-precision Q3D magnetic spectrograph. The neutron spectroscopic factors and the asymptotic normalization coefficients for these states in 16N were then derived based on distorted wave Born approximation analysis. The proton widths of the four low-lying resonant states in 16F were obtained according to charge symmetry of strong interaction.
A calibration source using gamma-rays from 16N (t_1/2 = 7.13 s) beta-decay has been developed for the Sudbury Neutrino Observatory (SNO) for the purpose of energy and other calibrations. The 16N is produced via the (n,p) reaction on 16O in the form of CO2 gas using 14-MeV neutrons from a commercially available Deuterium-Tritium (DT) generator. The 16N is produced in a shielding pit in a utility room near the SNO cavity and transferred to the water volumes (D2O or H2O) in a CO2 gas stream via small diameter capillary tubing. The bulk of the activity decays in a decay/trigger chamber designed to block the energetic beta-particles yet permit the primary branch 6.13 MeV gamma-rays to exit. Detection of the coincident beta-particles with plastic scintillator lining the walls of the decay chamber volume provides a tag for the SNO electronics. This paper gives details of the production, transfer, and triggering systems for this source along with a discussion of the source gamma-ray output and performance.
While the 12C(a,g)16O reaction plays a central role in nuclear astrophysics, the cross section at energies relevant to hydrostatic helium burning is too small to be directly measured in the laboratory. The beta-delayed alpha spectrum of 16N can be used to constrain the extrapolation of the E1 component of the S-factor; however, with this approach the resulting S-factor becomes strongly correlated with the assumed beta-alpha branching ratio. We have remeasured the beta-alpha branching ratio by implanting 16N ions in a segmented Si detector and counting the number of beta-alpha decays relative to the number of implantations. Our result, 1.49(5)e-5, represents a 24% increase compared to the accepted value and implies an increase of 14% in the extrapolated S-factor.
The evolution of massive stars with very low-metallicities depends critically on the amount of CNO nuclides which they produce. The $^{12}$N($p$,,$gamma$)$^{13}$O reaction is an important branching point in the rap-processes, which are believed to be alternative paths to the slow 3$alpha$ process for producing CNO seed nuclei and thus could change the fate of massive stars. In the present work, the angular distribution of the $^2$H($^{12}$N,,$^{13}$O)$n$ proton transfer reaction at $E_{mathrm{c.m.}}$ = 8.4 MeV has been measured for the first time. Based on the Johnson-Soper approach, the square of the asymptotic normalization coefficient (ANC) for the virtual decay of $^{13}$O$_mathrm{g.s.}$ $rightarrow$ $^{12}$N + $p$ was extracted to be 3.92 $pm$ 1.47 fm$^{-1}$ from the measured angular distribution and utilized to compute the direct component in the $^{12}$N($p$,,$gamma$)$^{13}$O reaction. The direct astrophysical S-factor at zero energy was then found to be 0.39 $pm$ 0.15 keV b. By considering the direct capture into the ground state of $^{13}$O, the resonant capture via the first excited state of $^{13}$O and their interference, we determined the total astrophysical S-factors and rates of the $^{12}$N($p$,,$gamma$)$^{13}$O reaction. The new rate is two orders of magnitude slower than that from the REACLIB compilation. Our reaction network calculations with the present rate imply that $^{12}$N($p,,gamma$)$^{13}$O will only compete successfully with the $beta^+$ decay of $^{12}$N at higher ($sim$two orders of magnitude) densities than initially predicted.
The $gamma$-process in core-collapse and/or type Ia supernova explosions is thought to explain the origin of the majority of the so-called $p$ nuclei (the 35 proton-rich isotopes between Se and Hg). Reaction rates for $gamma$-process reaction network studies have to be predicted using Hauser-Feshbach statistical model calculations. Recent investigations have shown problems in the prediction of $alpha$-widths at astrophysical energies which are an essential input for the statistical model. It has an impact on the reliability of abundance predictions in the upper mass range of the $p$ nuclei. With the measurement of the $^{164,166}$Er($alpha$,n)$^{167,169}$Yb reaction cross sections at energies close to the astrophysically relevant energy range we tested the recently suggested low energy modification of the $alpha$+nucleus optical potential in a mass region where $gamma$-process calculations exhibit an underproduction of the $p$ nuclei. Using the same optical potential for the $alpha$-width which was derived from combined $^{162}$Er($alpha$,n) and $^{162}$Er($alpha$,$gamma$) measurement makes it plausible that a low-energy modification of the optical $alpha$+nucleus potential is needed.