Do you want to publish a course? Click here

Correlation effects in (111) bilayers of perovskite transition-metal oxides

210   0   0.0 ( 0 )
 Added by Satoshi Okamoto
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the correlation-induced Mott, magnetic, and topological phase transitions in artificial (111) bilayers of perovskite transition-metal oxides LaAuO$_3$ and SrIrO$_3$ for which the previous density-functional theory calculations predicted topological insulating states. Using the dynamical-mean-field theory with realistic band structures and Coulomb interactions, LaAuO$_3$ bilayer is shown to be far away from a Mott insulating regime, and a topological-insulating state is robust. On the other hand, SrIrO$_3$ bilayer is on the verge of an orbital-selective topological Mott transition and turns to a trivial insulator by an antiferromagnetic ordering. Oxide bilayers thus provide a novel class of topological materials for which the interplay between the spin-orbit coupling and electron-electron interactions is a fundamental ingredient.



rate research

Read More

204 - Satoshi Okamoto 2012
The electronic properties of Mott insulators realized in (111) bilayers of perovskite transition-metal oxides are studied. The low-energy effective Hamiltonians for such Mott insulators are derived in the presence of a strong spin-orbit coupling. These models are characterized by the antiferromagnetic Heisenberg interaction and the anisotropic interaction whose form depends on the $d$ orbital occupancy. From exact diagonalization analyses on finite clusters, the ground state phase diagrams are derived, including a Kitaev spin liquid phase in a narrow parameter regime for $t_{2g}$ systems. Slave-boson mean-field analyses indicate the possibility of novel superconducting states induced by carrier doping into the Mott-insulating parent systems, suggesting the present model systems as unique playgrounds for studying correlation-induced novel phenomena. Possible experimental realizations are also discussed.
250 - Satoshi Okamoto , Di Xiao 2017
Correlated electron systems on a honeycomb lattice have emerged as a fertile playground to explore exotic electronic phenomena. Theoretical and experimental work has appeared to realize novel behavior, including quantum Hall effects and valleytronics, mainly focusing on van der Waals compounds, such as graphene, chalcogenides, and halides. In this article, we review our theoretical study on perovskite transition-metal oxides (TMOs) as an alternative system to realize such exotic phenomena. We demonstrate that novel quantum Hall effects and related phenomena associated with the honeycomb structure could be artificially designed by such TMOs by growing their heterostructures along the [111] crystallographic axis. One of the important predictions is that such TMO heterostructures could support two-dimensional topological insulating states. The strong correlation effects inherent to TM $d$ electrons further enrich the behavior.
The orbital excitations of a series of transition-metal compounds are studied by means of optical spectroscopy. Our aim was to identify signatures of collective orbital excitations by comparison with experimental and theoretical results for predominantly local crystal-field excitations. To this end, we have studied TiOCl, RTiO3 (R=La, Sm, Y), LaMnO3, Y2BaNiO5, CaCu2O3, and K4Cu4OCl10, ranging from early to late transition-metal ions, from t_2g to e_g systems, and including systems in which the exchange coupling is predominantly three-dimensional, one-dimensional or zero-dimensional. With the exception of LaMnO3, we find orbital excitations in all compounds. We discuss the competition between orbital fluctuations (for dominant exchange coupling) and crystal-field splitting (for dominant coupling to the lattice). Comparison of our experimental results with configuration-interaction cluster calculations in general yield good agreement, demonstrating that the coupling to the lattice is important for a quantitative description of the orbital excitations in these compounds. However, detailed theoretical predictions for the contribution of collective orbital modes to the optical conductivity (e.g., the line shape or the polarization dependence) are required to decide on a possible contribution of orbital fluctuations at low energies, in particular in case of the orbital excitations at about 0.25 eV in RTiO3. Further calculations are called for which take into account the exchange interactions between the orbitals and the coupling to the lattice on an equal footing.
The influence of correlation effects on the orbital moments for transition metals and their alloys is studied by first-principle relativistic Density Functional Theory in combination with the Dynamical Mean-Field Theory. In contrast to the previous studies based on the orbital polarization corrections we obtain an improved description of the orbital moments for wide range of studied systems as bulk Fe, Co and Ni, Fe-Co disordered alloys and 3$d$ impurities in Au. The proposed scheme can give simultaneously a correct dynamical description of the spectral function as well as static magnetic properties of correlated disordered metals.
We present the first dynamical implementation of the combined GW and dynamical mean field scheme (GW+DMFT) for first principles calculations of the electronic properties of correlated materials. The application to the ternary transition metal oxide SrVO3 demonstrates that this schemes inherits the virtues of its two parent theories: a good description of the local low energy correlation physics encoded in a renormalized quasi-particle band structure, spectral weight transfer to Hubbard bands, and the physics of screening driven by long-range Coulomb interactions. Our data is in good agreement with available photoemission and inverse photoemission spectra; our analysis leads to a reinterpretation of the commonly accepted three-peak structure as originating from orbital effects rather than from the electron addition peak within the t2g manifold.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا