No Arabic abstract
The origin of the knee in cosmic ray spectrum remains to be an unsolved fundamental problem. There are various kinds of models which predict different break positions and the compositions of the knee. In this work, we suggest to use diffuse $gamma$-rays and neutrinos as probes to test these models. Based on several typical types of the composition models, the diffuse $gamma$-ray and neutrino spectra are calculated, which show distinctive cutoff behaviours at energies from tens of TeV to multi-PeV. The expected flux will be observable by the newly upgraded Tibet-AS$gamma$+MD (muon detector) experiment as well as more sensitive future projects, such as LHAASO and HiSCORE. By comparing the neutrino spectrum with the recent observations by IceCube experiment, we find that the diffuse neutrinos from interactions between the cosmic rays and the interstellar medium may not be responsible to the majority of the IceCube events. Future measurements of the neutrinos may be able to identify the Galactic diffuse component and further shed light on the problem of the knee of cosmic rays.
We report, for the first time, the long-awaited detection of diffuse gamma rays with energies between 100 TeV and 1 PeV in the Galactic disk. Particularly, all gamma rays above 398 TeV are observed apart from known TeV gamma-ray sources and compatible with expectations from the hadronic emission scenario in which gamma rays originate from the decay of $pi^0$s produced through the interaction of protons with the interstellar medium in the Galaxy. This is strong evidence that cosmic rays are accelerated beyond PeV energies in our Galaxy and spread over the Galactic disk.
The cores of Arp 220, the closest ultra-luminous infrared starburst galaxy, provide an opportunity to study interactions of cosmic rays under extreme conditions. In this paper, we model the populations of cosmic rays produced by supernovae in the central molecular zones of both starburst nuclei. We find that ~65 - 100% of cosmic rays are absorbed in these regions due to their huge molecular gas contents, and thus, the nuclei of Arp 220 nearly complete proton calorimeters. As the cosmic ray protons collide with the interstellar medium, they produce secondary electrons that are also contained within the system and radiate synchrotron emission. Using results from chi-squared tests between the model and the observed radio spectral energy distribution, we predict the emergent gamma-ray and high-energy neutrino spectra and find the magnetic field to be at milligauss levels. Because of the extremely intense far-infrared radiation fields, the gamma-ray spectrum steepens significantly at TeV energies due to gamma-gamma absorption.
We investigate the shock acceleration of particles in massive galaxy mergers or collisions, and show that cosmic rays (CRs) can be accelerated up to the second knee energy ~0.1-1 EeV and possibly beyond, with a hard spectral index Gamma ~ 2. Such CRs lose their energy via hadronuclear interactions within a dynamical timescale of the merger shock, producing gamma rays and neutrinos as a by-product. If ~ 10 % of the shock dissipated energy goes into CR acceleration, some local merging galaxies will produce gamma-ray counterparts detectable by CTA. Also, based on the concordance cosmology, where a good fraction of the massive galaxies experience a major merger in a cosmological timescale, the neutrino counterparts can constitute ~ 20-60 % of the isotropic background detected by IceCube.
The detection of high-energy astrophysical neutrinos and ultra-high-energy cosmic rays (UHECRs) provides a new way to explore sources of cosmic rays. One of the highest energy neutrino events detected by IceCube, tagged as IC35, is close to the UHECR anisotropy region detected by Pierre Auger Observatory. The nearby starburst galaxy (SBG), NGC 4945, is close to this anisotropic region and inside the mean angular error of the IC35 event. Considering the hypernovae contribution located in the SB region of NGC 4945, which can accelerate protons up to $sim 10^{17} , {rm eV}$ and inject them into the interstellar medium, we investigate the origin of this event around this starburst galaxy. We show that the interaction of these protons with the SB regions gas density could explain Fermi-LAT gamma-ray and radio observations if the magnetic fields strength in the SB region is the order of $sim rm mG$. Our estimated PeV neutrino events, in ten years, for this source is approximately 0.01 ($4times10^{-4}$) if a proton spectral index of 2.4 (2.7) is considered, which would demonstrate that IC35 is not produced in the central region of this SBG. Additionally, we consider the superwind region of NGC 4945 and show that protons can hardly be accelerated in it up to UHEs.
Investigations of the energy spectrum as well as the mass composition of cosmic rays in the energy range of PeVto EeV are important for understanding both, the origin of the galactic and the extragalactic cosmic rays. Recently, three modern experimental installations (KASCADE-Grande, IceTop, Tunka-133), dedicated to investigate this primary energy range, have published new results on the all-particle energy spectrum. In this short review these results are presented and the similarities and differences discussed. In addition, the effects of using different hadronic interaction models for interpreting the measured air-shower data will be examined. Finally, a brief discussion on the question if the present results are in agreement or in contradiction with astrophysical models for the transition from galactic to 10 pagesextragalactic origin of cosmic rays completes this paper.