Size of edge-critical uniquely 3-colorable planar graphs


Abstract in English

A graph $G$ is emph{uniquely k-colorable} if the chromatic number of $G$ is $k$ and $G$ has only one $k$-coloring up to permutation of the colors. A uniquely $k$-colorable graph $G$ is edge-critical if $G-e$ is not a uniquely $k$-colorable graph for any edge $ein E(G)$. Melnikov and Steinberg [L. S. Melnikov, R. Steinberg, One counterexample for two conjectures on three coloring, Discrete Math. 20 (1977) 203-206] asked to find an exact upper bound for the number of edges in a edge-critical 3-colorable planar graph with $n$ vertices. In this paper, we give some properties of edge-critical uniquely 3-colorable planar graphs and prove that if $G$ is such a graph with $n(geq6)$ vertices, then $|E(G)|leq frac{5}{2}n-6 $, which improves the upper bound $frac{8}{3}n-frac{17}{3}$ given by Matsumoto [N. Matsumoto, The size of edge-critical uniquely 3-colorable planar graphs, Electron. J. Combin. 20 (3) (2013) $#$P49]. Furthermore, we find some edge-critical 3-colorable planar graphs which have $n(=10,12, 14)$ vertices and $frac{5}{2}n-7$ edges.

Download