Artificial Gauge Fields and Spin-Orbit Couplings in Cold Atom Systems


Abstract in English

This article is a report of Projet bibliographique of M1 at Ecole Normale Superieure. In this article we reviewed the historical developments in artificial gauge fields and spin-orbit couplings in cold atom systems. We resorted to origins of literatures to trace the ideas of the developments. For pedagogical purposes, we tried to work out examples carefully and clearly, to verified the validity of various approximations and arguments in detail, and to give clear physical and mathematical pictures of the problems that we discussed. The first part of this article introduced the fundamental concepts of Berry phase and Jaynes-Cummings model. The second part reviewed two schemes to generate artificial gauge fields with N-pod scheme in cold atom systems. The first one is based on dressed-atom picture which provide a method to generate non-Abelian gauge fields with dark states. The second one is about rotating scheme which is achieved earlier historically. Non-Abelian gauge field inevitably leads to spin-orbit coupling. We reviewed some developments in achieve spin-orbital coupling theoretically and experimentally. The fourth part was devoted to recently developed idea of optical flux lattice that provides a possibility to reach the strongly correlated regime in cold atom systems. We developed a geometrical interpretation based on Coopers theory. Some useful formulae and their proofs were listed in the Appendix.

Download