Topological modular forms with level structure


Abstract in English

The cohomology theory known as Tmf, for topological modular forms, is a universal object mapping out to elliptic cohomology theories, and its coefficient ring is closely connected to the classical ring of modular forms. We extend this to a functorial family of objects corresponding to elliptic curves with level structure and modular forms on them. Along the way, we produce a natural way to restrict to the cusps, providing multiplicative maps from Tmf with level structure to forms of K-theory. In particular, this allows us to construct a connective spectrum tmf_0(3) consistent with properties suggested by Mahowald and Rezk. This is accomplished using the machinery of logarithmic structures. We construct a sheaf of locally even-periodic elliptic cohomology theories, equipped with highly structured multiplication, on the log-etale site of the moduli of elliptic curves. Evaluating this sheaf on modular curves produces Tmf with level structure.

Download