It is well known that a particle cannot freely share entanglement with two or more particles. This restriction is generally called monogamy. However the formal quantification of such restriction is only known for some measures of entanglement and for two-level systems. The first and broadly known monogamy relation was established by Coffman, Kundu, and Wootters for the square of the concurrence. Since then, it is usually said that the entanglement of formation is not monogamous, as it does not obey the same relation. We show here that despite that, the entanglement of formation cannot be freely shared and therefore should be said to be monogamous. Furthermore, the square of the entanglement of formation does obey the same relation of the squared concurrence, a fact recently noted for three particles and extended here for N particles. Therefore the entanglement of formation is as monogamous as the concurrence. We also numerically study how the entanglement is distributed in pure states of three qubits and the relation between the sum of the bipartite entanglement and the classical correlation.