Do you want to publish a course? Click here

A Molecular Line Scan in the Hubble Deep Field North: Constraints on the CO Luminosity Function and the Cosmic H2 Density

188   0   0.0 ( 0 )
 Added by Roberto Decarli
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present direct constraints on the CO luminosity function at high redshift and the resulting cosmic evolution of the molecular gas density, $rho_{rm H2}$(z), based on a blind molecular line scan in the Hubble Deep Field North (HDF-N) using the IRAM Plateau de Bure Interferometer. Our line scan of the entire 3mm window (79-115 GHz) covers a cosmic volume of ~7000 Mpc$^3$, and redshift ranges z<0.45, 1.01<z<1.89 and z>2. We use the rich multiwavelength and spectroscopic database of the HDF-N to derive some of the best constraints on CO luminosities in high redshift galaxies to date. We combine the blind CO detections in our molecular line scan (presented in a companion paper) with stacked CO limits from galaxies with available spectroscopic redshifts (slit or mask spectroscopy from Keck and grism spectroscopy from HST) to give first blind constraints on high-z CO luminosity functions and the cosmic evolution of the H2 mass density $rho_{rm H2}$(z) out to redshifts z~3. A comparison to empirical predictions of $rho_{rm H2}$(z) shows that the securely detected sources in our molecular line scan already provide significant contributions to the predicted $rho_{rm H2}$(z) in the redshift bins <z>~1.5 and <z>~2.7. Accounting for galaxies with CO luminosities that are not probed by our observations results in cosmic molecular gas densities $rho_{rm H2}$(z) that are higher than current predictions. We note however that the current uncertainties (in particular the luminosity limits, number of detections, as well as cosmic volume probed) are significant, a situation that is about to change with the emerging ALMA observatory.



rate research

Read More

We present a molecular line scan in the Hubble Deep Field North (HDF-N) that covers the entire 3mm window (79-115 GHz) using the IRAM Plateau de Bure Interferometer. Our CO redshift coverage spans z<0.45, 1<z<1.9 and all z>2. We reach a CO detection limit that is deep enough to detect essentially all z>1 CO lines reported in the literature so far. We have developed and applied different line searching algorithms, resulting in the discovery of 17 line candidates. We estimate that the rate of false positive line detections is ~2/17. We identify optical/NIR counterparts from the deep ancillary database of the HDF-N for seven of these candidates and investigate their available SEDs. Two secure CO detections in our scan are identified with star-forming galaxies at z=1.784 and at z=2.047. These galaxies have colors consistent with the `BzK color selection and they show relatively bright CO emission compared with galaxies of similar dust continuum luminosity. We also detect two spectral lines in the submillimeter galaxy HDF850.1 at z=5.183. We consider an additional 9 line candidates as high quality. Our observations also provide a deep 3mm continuum map (1-sigma noise level = 8.6 $mu$Jy/beam). Via a stacking approach, we find that optical/MIR bright galaxies contribute only to <50% of the SFR density at 1<z<3, unless high dust temperatures are invoked. The present study represents a first, fundamental step towards an unbiased census of molecular gas in `normal galaxies at high-z, a crucial goal of extragalactic astronomy in the ALMA era.
In this paper we use ASPECS, the ALMA Spectroscopic Survey in the {em Hubble} Ultra Deep Field (UDF) in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to $zsim 4.5$. This study is based on galaxies that have been solely selected through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted `knee of the CO luminosity function (around $5times10^{9}$ K km/s pc$^2$). We find clear evidence of an evolution in the CO luminosity function with respect to $zsim 0$, with more CO luminous galaxies present at $zsim 2$. The observed galaxies at $zsim 2$ also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a factor 3-10 drop from $z sim 2$ to $z sim 0$ (with significant error bars), and possibly a decline at $z>3$. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation ($zsim2$).
The Millimeter-wave Intensity Mapping Experiment (mmIME) recently reported a detection of excess spatial fluctuations at a wavelength of 3 mm, which can be attributed to unresolved emission of several CO rotational transitions between $zsim1-5$. We study the implications of this data for the high-redshift interstellar medium using a suite of state-of-the-art semianalytic simulations which have successfully reproduced many other sub-millimeter line observations across the relevant redshift range. We find that the semianalytic predictions are mildly in tension with the mmIME result, with a predicted CO power $sim3.5sigma$ below what was observed. We explore some simple modifications to the models which could resolve this tension. Increasing the molecular gas abundance at the relevant redshifts to $sim10^8 M_odot rm{Mpc}^{-3}$, a value well above that obtained from directly imaged sources, would resolve the discrepancy, as would assuming a CO-$H_2$ conversion factor $alpha_{rm{CO}}$ of $sim1.5 M_{odot}$ K$^{-1}$ $(rm{km}/rm{s})^{-1}$ pc$^{2}$, a value somewhat lower than is commonly assumed. We go on to demonstrate that these conclusions are quite sensitive to the detailed assumptions of our simulations, highlighting the need for more careful modeling efforts as more intensity mapping data become available.
Understanding cosmic reionization requires the identification and characterization of early sources of hydrogen-ionizing photons. The 2012 Hubble Ultra Deep Field (UDF12) campaign has acquired the deepest infrared images with the Wide Field Camera 3 aboard Hubble Space Telescope and, for the first time, systematically explored the galaxy population deep into the era when cosmic microwave background (CMB) data indicates reionization was underway. The UDF12 campaign thus provides the best constraints to date on the abundance, luminosity distribution, and spectral properties of early star-forming galaxies. We synthesize the new UDF12 results with the most recent constraints from CMB observations to infer redshift-dependent ultraviolet (UV) luminosity densities, reionization histories, and electron scattering optical depth evolution consistent with the available data. Under reasonable assumptions about the escape fraction of hydrogen ionizing photons and the intergalactic medium clumping factor, we find that to fully reionize the universe by redshift z~6 the population of star-forming galaxies at redshifts z~7-9 likely must extend in luminosity below the UDF12 limits to absolute UV magnitudes of M_UVsim -13 or fainter. Moreover, low levels of star formation extending to redshifts z~15-25, as suggested by the normal UV colors of zsimeq7-8 galaxies and the smooth decline in abundance with redshift observed by UDF12 to zsimeq10, are additionally likely required to reproduce the optical depth to electron scattering inferred from CMB observations.
We present the 2.12~$mu$m narrow-band image of the Hubble Deep Field North taken with the near-infrared camera (CISCO) on the Subaru telescope. Among five targets whose H$alpha$ or [O~{sc iii}] emission lines are redshifted into our narrow-band range expected from their spectroscopic redshift, four of them have strong emission lines, especially for the two [O~{sc iii}] emission-line objects. The remaining one target shows no H$alpha$ emission in spite of its bright rest-UV luminosity, indicating that this object is already under the post-starburst phase. The volume-averaged $SFR$ derived from the detected two H$alpha$ emission is roughly consistent with that evaluated from the rest-UV continuum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا