Do you want to publish a course? Click here

Multilingual Distributed Representations without Word Alignment

121   0   0.0 ( 0 )
 Added by Karl Moritz Hermann
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

Distributed representations of meaning are a natural way to encode covariance relationships between words and phrases in NLP. By overcoming data sparsity problems, as well as providing information about semantic relatedness which is not available in discrete representations, distributed representations have proven useful in many NLP tasks. Recent work has shown how compositional semantic representations can successfully be applied to a number of monolingual applications such as sentiment analysis. At the same time, there has been some initial success in work on learning shared word-level representations across languages. We combine these two approaches by proposing a method for learning distributed representations in a multilingual setup. Our model learns to assign similar embeddings to aligned sentences and dissimilar ones to sentence which are not aligned while not requiring word alignments. We show that our representations are semantically informative and apply them to a cross-lingual document classification task where we outperform the previous state of the art. Further, by employing parallel corpora of multiple language pairs we find that our model learns representations that capture semantic relationships across languages for which no parallel data was used.



rate research

Read More

We propose a multilingual model to recognize Big Five Personality traits from text data in four different languages: English, Spanish, Dutch and Italian. Our analysis shows that words having a similar semantic meaning in different languages do not necessarily correspond to the same personality traits. Therefore, we propose a personality alignment method, GlobalTrait, which has a mapping for each trait from the source language to the target language (English), such that words that correlate positively to each trait are close together in the multilingual vector space. Using these aligned embeddings for training, we can transfer personality related training features from high-resource languages such as English to other low-resource languages, and get better multilingual results, when compared to using simple monolingual and unaligned multilingual embeddings. We achieve an average F-score increase (across all three languages except English) from 65 to 73.4 (+8.4), when comparing our monolingual model to multilingual using CNN with personality aligned embeddings. We also show relatively good performance in the regression tasks, and better classification results when evaluating our model on a separate Chinese dataset.
We propose a simple method to align multilingual contextual embeddings as a post-pretraining step for improved zero-shot cross-lingual transferability of the pretrained models. Using parallel data, our method aligns embeddings on the word level through the recently proposed Translation Language Modeling objective as well as on the sentence level via contrastive learning and random input shuffling. We also perform sentence-level code-switching with English when finetuning on downstream tasks. On XNLI, our best model (initialized from mBERT) improves over mBERT by 4.7% in the zero-shot setting and achieves comparable result to XLM for translate-train while using less than 18% of the same parallel data and 31% less model parameters. On MLQA, our model outperforms XLM-R_Base that has 57% more parameters than ours.
293 - Sunipa Dev 2020
High-dimensional representations for words, text, images, knowledge graphs and other structured data are commonly used in different paradigms of machine learning and data mining. These representations have different degrees of interpretability, with efficient distributed representations coming at the cost of the loss of feature to dimension mapping. This implies that there is obfuscation in the way concepts are captured in these embedding spaces. Its effects are seen in many representations and tasks, one particularly problematic one being in language representations where the societal biases, learned from underlying data, are captured and occluded in unknown dimensions and subspaces. As a result, invalid associations (such as different races and their association with a polar notion of good versus bad) are made and propagated by the representations, leading to unfair outcomes in different tasks where they are used. This work addresses some of these problems pertaining to the transparency and interpretability of such representations. A primary focus is the detection, quantification, and mitigation of socially biased associations in language representation.
Unsupervised speech representation learning has shown remarkable success at finding representations that correlate with phonetic structures and improve downstream speech recognition performance. However, most research has been focused on evaluating the representations in terms of their ability to improve the performance of speech recognition systems on read English (e.g. Wall Street Journal and LibriSpeech). This evaluation methodology overlooks two important desiderata that speech representations should have: robustness to domain shifts and transferability to other languages. In this paper we learn representations from up to 8000 hours of diverse and noisy speech data and evaluate the representations by looking at their robustness to domain shifts and their ability to improve recognition performance in many languages. We find that our representations confer significant robustness advantages to the resulting recognition systems: we see significant improvements in out-of-domain transfer relative to baseline feature sets and the features likewise provide improvements in 25 phonetically diverse languages including tonal languages and low-resource languages.
Multi-language machine translation without parallel corpora is challenging because there is no explicit supervision between languages. Existing unsupervised methods typically rely on topological properties of the language representations. We introduce a framework that instead uses the visual modality to align multiple languages, using images as the bridge between them. We estimate the cross-modal alignment between language and images, and use this estimate to guide the learning of cross-lingual representations. Our language representations are trained jointly in one model with a single stage. Experiments with fifty-two languages show that our method outperforms baselines on unsupervised word-level and sentence-level translation using retrieval.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا