Do you want to publish a course? Click here

A Search for Photometric Variability Towards M71 with the Near-Infrared Transiting ExoplanetS Telescope

98   0   0.0 ( 0 )
 Added by James McCormac Ph.D
 Publication date 2013
  fields Physics
and research's language is English
 Authors J. McCormac




Ask ChatGPT about the research

We present the results of a high-cadence photometric survey of an $11times11$ field centred on the globular cluster M71, with the Near-Infrared Transiting ExoplanetS Telescope. The aim of our survey is to search for stellar variability and transiting giant exoplanets. This survey differs from previous photometric surveys of M71 in that it is more sensitive to lower amplitude ($Delta Mleq0.02$ mag) and longer period ($P>2$ d) variability than previous work on this cluster. We have discovered $17$ new variable stars towards M71 and confirm the nature of $13$ previously known objects, for which the orbital periods of $7$ are refined or newly determined. Given the photometric precision of our high-cadence survey on the horizontal branch of M71, we confirm the cluster is devoid of RR Lyrae variable stars within the area surveyed. We present new $B$ and $V$ band photometry of the stars in our sample from which we estimate spectral types of the variable objects. We also search our survey data for transiting hot Jupiters and present simulations of the expected number of detections. Approximately $1,000$ stars were observed on the main-sequence of M71 with sufficient photometric accuracy to detect a transiting hot Jupiter, however none were found.



rate research

Read More

Due to the extreme extinction towards the Galactic centre ($A_{V} sim 30$ mag), its stellar population is mainly studied in the near-infrared (NIR) regime. Therefore, a proper analysis of the NIR extinction curve is necessary to fully characterise the stellar structure and population of the inner part of the galaxy. We studied the dependence of the extinction index ($alpha_lambda$) in the NIR on the line of sight, wavelength, and extinction. We used the GALACTICNUCLEUS imaging survey, a high angular resolution catalogue ($0.2$) for the inner part of the Galaxy in $JHK_s$, and studied the spatial variation in the extinction index. We also applied two independent methods based on red clump stars to compute the extinction index between different bands and its variation with wavelength. We did not detect any significant line-of-sight or extinction variation in $alpha$ within the studied region in the nuclear stellar disc. The extinction index between $JH$ and $HK_s$ differs by $0.19 pm 0.05$. We obtained mean values for the extinction indices $alpha_{JH} = 2.43pm0.03$ and $alpha_{HK_s} = 2.23pm0.03$. The dependence of the extinction index on the wavelength could explain the differences obtained for $alpha_lambda$ in the literature since it was assumed constant for the NIR regime.
CARMENES, Calar Alto high-Resolution search for M dwarfs with Exo-earths with a Near-infrared Echelle Spectrograph, is a study for a next-generation instrument for the 3.5m Calar Alto Telescope to be designed, built, integrated, and operated by a consortium of nine German and Spanish institutions. Our main objective is finding habitable exoplanets around M dwarfs, which will be achieved by radial velocity measurements on the m/s level in the near-infrared, where low-mass stars emit the bulk of their radiation.
488 - Coel Hellier 2010
Since 2006 WASP-South has been scanning the Southern sky for transiting exoplanets. Combined with Geneva Observatory radial velocities we have so far found over 30 transiting exoplanets around relatively bright stars of magnitude 9--13. We present a status report for this ongoing survey.
A number of transiting, potentially habitable Earth-sized exoplanets have recently been detected around several nearby M dwarf stars. These worlds represent important targets for atmospheric characterization for the upcoming NASA James Webb Space Telescope. Given that available time for exoplanet characterization will be limited, it is critically important to first understand the capabilities and limitations of JWST when attempting to detect atmospheric constituents for potentially Earth-like worlds orbiting cool stars. Here, we explore coupled climate-chemistry atmospheric models for Earth-like planets orbiting a grid of M dwarf hosts. Using a newly-developed and validated JWST instrument model - the JWST Exoplanet Transit Simulator (JETS) - we investigate the detectability of key biosignature and habitability indicator gaseous species for a variety of relevant instruments and observing modes. Spectrally-resolved detection scenarios as well as cases where the spectral impact of a given species is integrated across the entire range of an instrument/mode are considered and serve to highlight the importance of considering information gained over an entire observable spectral range. When considering the entire spectral coverage of an instrument/mode, detections of methane, carbon dioxide, oxygen and water at signal-to-noise ratio 5 could be achieved with observations of several tens of transits (or less) for cloud-free Earth-like worlds orbiting mid- to late-type M dwarfs at system distances of up to 10-15 pc. When compared to previous results, requisite exposure times for gas species detection depend on approaches to quantifying the spectral impact of the species as well as underlying photochemical model assumptions. Thus, constraints on atmospheric abundances, even if just upper limits, by JWST have the potential to further our understanding of terrestrial atmospheric chemistry.
161 - S. Ertel , D. Defr`ere , O.Absil 2016
Context: Extended circumstellar emission has been detected within a few 100 milli-arcsec around > 10% of nearby main sequence stars using near-infrared interferometry. Follow-up observations using other techniques, should they yield similar results or non-detections, can provide strong constraints on the origin of the emission. They can also reveal the variability of the phenomenon. Aims: We aim to demonstrate the persistence of the phenomenon over time scales of a few years and to search for variability of our previously detected excesses. Methods: Using VLTI/PIONIER in H band we have carried out multi-epoch observations of the stars for which a near-infrared excess was previously detected with the same observing technique and instrument. The detection rates and distribution of the excesses from our original survey and the follow-up observations are compared statistically. A search for variability of the excesses in our time series is carried out based on the level of the broadband excesses. Results: In 12 of 16 follow-up observations, an excess is re-detected with a significance of > 2 sigma, and in 7 of 16 follow-up observations significant excess (> 3 sigma) has been re-detected. We statistically demonstrate with very high confidence that the phenomenon persists for the majority of the systems. We also present the first detection of potential variability in two sources. Conclusions: We conclude that the phenomenon responsible for the excesses persists over time scales of a few years for the majority of the systems. However, we also find that variability intrinsic to a target can cause it to have no significant excess at the time of a specific observation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا