Anisotropy of excitation and relaxation of photogenerated Dirac electrons in graphene


Abstract in English

We investigate the polarization dependence of the carrier excitation and relaxation in epitaxial multilayer graphene. Degenerate pump-probe experiments with a temporal resolution of 30 fs are performed for different rotation angles of the pump-pulse polarization with respect to the polarization of the probe pulse. A pronounced dependence of the pump-induced transmission on this angle is found. It reflects a strong anisotropy of the pump-induced occupation of photogenerated carriers in momentum space even though the band structure is isotropic. Within 150 fs after excitation an isotropic carrier distribution is established. Our observations imply the predominant role of collinear scattering preserving the initially optically generated anisotropy in the carrier distribution. The experiments are well described by microscopic time-, momentum, and angle-resolved modelling, which allows us to unambiguously identify non-collinear carrier-phonon scattering to be the main relaxation mechanism giving rise to an isotropic distribution in the first hundred fs after optical excitation.

Download