No Arabic abstract
We report a complete calculation of the quark and glue momenta and angular momenta in the proton. These include the quark contributions from both the connected and disconnected insertions. The quark disconnected insertion loops are computed with $Z_4$ noise, and the signal-to-noise is improved with unbiased subtractions. The glue operator is comprised of gauge-field tensors constructed from the overlap operator. The calculation is carried out on a $16^3 times 24$ quenched lattice at $beta = 6.0$ for Wilson fermions with $kappa=0.154, 0.155$, and $0.1555$ which correspond to pion masses at $650, 538$, and $478$~MeV, respectively. The chirally extrapolated $u$ and $d$ quark momentum/angular momentum fraction is found to be $0.64(5)/0.70(5)$, the strange momentum/angular momentum fraction is $0.024(6)/0.023(7)$, and that of the glue is $0.33(6)/0.28(8)$. The previous study of quark spin on the same lattice revealed that it carries a fraction of $0.25(12)$ of proton spin. The orbital angular momenta of the quarks are then obtained from subtracting the spin from their corresponding angular momentum components. We find that the quark orbital angular momentum constitutes $0.47(13)$ of the proton spin with almost all of it coming from the disconnected insertions.
We report a complete calculation of the quark and glue momenta and angular momenta in the proton. These include the quark contributions from both the connected and disconnected insertions. The calculation is carried out on a $16^3 times 24$ quenched lattice at $beta = 6.0$ and for Wilson fermions with $kappa = 0.154, 0.155,$ and 0.1555 which correspond to pion masses at 650, 538, and 478 MeV. The quark loops are calculated with $Z_4$ noise and signal-to-noise is improved further with unbiased subtractions. The glue operator is comprised of gauge-field tensors constructed from the overlap operator. The $u$ and $d$ quark momentum/angular momentum fraction is 0.66(5)/0.72(5), the strange momentum/angular momentum fraction is 0.024(6)/0.023(7), and that of the glue is 0.31(6)/0.25(8). The orbital angular momenta of the quarks are obtained from subtracting the angular momentum component from its corresponding spin. As a result, the quark orbital angular momentum constitutes 0.50(2) of the proton spin, with almost all it coming from the disconnected insertion. The quark spin carries a fraction 0.25(12) and glue carries a fraction 0.25(8) of the total proton spin.
By introducing an additional operator into the action and using the Feynman-Hellmann theorem we describe a method to determine both the quark line connected and disconnected terms of matrix elements. As an illustration of the method we calculate the gluon contribution (chromo-electric and chromo-magnetic components) to the nucleon mass.
A Poincare-covariant quark+diquark Faddeev equation is used to compute nucleon elastic form factors on $0leq Q^2leq 18 ,m_N^2$ ($m_N$ is the nucleon mass) and elucidate their role as probes of emergent hadronic mass in the Standard Model. The calculations expose features of the form factors that can be tested in new generation experiments at existing facilities, e.g. a zero in $G_E^p/G_M^p$; a maximum in $G_E^n/G_M^n$; and a zero in the protons $d$-quark Dirac form factor, $F_1^d$. Additionally, examination of the associated light-front-transverse number and anomalous magnetisation densities reveals, inter alia: a marked excess of valence $u$-quarks in the neighbourhood of the protons centre of transverse momentum; and that the valence $d$-quark is markedly more active magnetically than either of the valence $u$-quarks. The calculations and analysis also reveal other aspects of nucleon structure that could be tested with a high-luminosity accelerator capable of delivering higher beam energies than are currently available.
We study the strangeness contribution to nucleon matrix elements using Nf=2+1 dynamical clover fermion configurations generated by the CP-PACS/JLQCD collaboration. In order to evaluate the disconnected insertion (DI), we use the Z(4) stochastic method, along with unbiased subtraction from the hopping parameter expansion which reduces the off-diagonal noises in the stochastic method. Furthermore, we find that using many nucleon sources for each configuration is effective in improving the signal. Our results for the quark contribution to the first moment <x>_q in the DI, and the strangeness magnetic moment show that the statistical errors are under control with these techniques. We also study the gluonic contribution to the nucleon using the overlap operator to construct the gauge field tensor, F_{mu,nu}. The application to the calculation of first moment, <x>_G, gives a good signal in quenched lattice QCD.
The adoption of two distinct boundary conditions for two fermions species on a finite lattice allows to deal with arbitrary relative momentum between the two particle species, in spite of the momentum quantization rule due to a limited physical box size. We test the physical significance of this topological momentum by checking in the continuum limit the validity of the expected energy-momentum dispersion relations.