No Arabic abstract
We analyse the anisotropic clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS Data Release 11 (DR11) sample, which consists of $690,827$ galaxies in the redshift range $0.43 < z < 0.7$ and has a sky coverage of $8,498,text{deg}^2$. We perform our analysis in Fourier space using a power spectrum estimator suggested by Yamamoto et al. (2006). We measure the multipole power spectra in a self-consistent manner for the first time in the sense that we provide a proper way to treat the survey window function and the integral constraint, without the commonly used assumption of an isotropic power spectrum and without the need to split the survey into sub-regions. The main cosmological signals exploited in our analysis are the Baryon Acoustic Oscillations and the signal of redshift space distortions, both of which are distorted by the Alcock-Paczynski effect. Together, these signals allow us to constrain the distance ratio $D_V(z_{rm eff})/r_s(z_d) = 13.89pm 0.18$, the Alcock-Paczynski parameter $F_{rm AP}(z_{rm eff}) = 0.679pm0.031$ and the growth rate of structure $f(z_{rm eff})sigma_8(z_{rm eff}) = 0.419pm0.044$ at the effective redshift $z_{rm eff}=0.57$. We did not find significant systematic uncertainties for $D_V/r_s$ or $F_{rm AP}$ but include a systematic error for $fsigma_8$ of $3.1%$. Combining our dataset with Planck to test General Relativity (GR) through the simple $gamma$-parameterisation, reveals a $sim 2sigma$ tension between the data and the prediction by GR. The tension between our result and GR can be traced back to a tension in the clustering amplitude $sigma_8$ between CMASS and Planck.
We report on the small scale (0.5<r<40h^-1 Mpc) clustering of 78895 massive (M*~10^11.3M_sun) galaxies at 0.2<z<0.4 from the first two years of data from the Baryon Oscillation Spectroscopic Survey (BOSS), to be released as part of SDSS Data Release 9 (DR9). We describe the sample selection, basic properties of the galaxies, and caveats for working with the data. We calculate the real- and redshift-space two-point correlation functions of these galaxies, fit these measurements using Halo Occupation Distribution (HOD) modeling within dark matter cosmological simulations, and estimate the errors using mock catalogs. These galaxies lie in massive halos, with a mean halo mass of 5.2x10^13 h^-1 M_sun, a large scale bias of ~2.0, and a satellite fraction of 12+/-2%. Thus, these galaxies occupy halos with average masses in between those of the higher redshift BOSS CMASS sample and the original SDSS I/II LRG sample.
We analyse the Baryon Acoustic Oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in Fourier-space, using the power spectrum monopole and quadrupole. The dataset includes $1,198,006$ galaxies over the redshift range $0.2 < z < 0.75$. We divide this dataset into three (overlapping) redshift bins with the effective redshifts $zeff = 0.38$, $0.51$ and $0.61$. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as $sim 1000$ MultiDark-Patchy mock catalogues, which mimic the BOSS-DR12 target selection. We apply density field reconstruction to enhance the BAO signal-to-noise ratio. By including the power spectrum quadrupole we can separate the line-of-sight and angular modes, which allows us to constrain the angular diameter distance $D_A(z)$ and the Hubble parameter $H(z)$ separately. We obtain two independent $1.6%$ and $1.5%$ constraints on $D_A(z)$ and $2.9%$ and $2.3%$ constraints on $H(z)$ for the low ($zeff=0.38$) and high ($zeff=0.61$) redshift bin, respectively. We obtain two independent $1%$ and $0.9%$ constraints on the angular averaged distance $D_V(z)$, when ignoring the Alcock-Paczynski effect. The detection significance of the BAO signal is of the order of $8sigma$ (post-reconstruction) for each of the three redshift bins. Our results are in good agreement with the Planck prediction within $Lambda$CDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in~citet{Alam2016} to produce the final cosmological constraints from BOSS.
We investigate the anisotropic clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) sample, which consists of $1,198,006$ galaxies in the redshift range $0.2 < z < 0.75$ and a sky coverage of $10,252,$deg$^2$. We analyse this dataset in Fourier space, using the power spectrum multipoles to measure Redshift-Space Distortions (RSD) simultaneously with the Alcock-Paczynski (AP) effect and the Baryon Acoustic Oscillation (BAO) scale. We include the power spectrum monopole, quadrupole and hexadecapole in our analysis and compare our measurements with a perturbation theory based model, while properly accounting for the survey window function. To evaluate the reliability of our analysis pipeline we participate in a mock challenge, which resulted in systematic uncertainties significantly smaller than the statistical uncertainties. While the high-redshift constraint on $fsigma_8$ at $z_{rm eff}=0.61$ indicates a small ($sim 1.4sigma$) deviation from the prediction of the Planck $Lambda$CDM model, the low-redshift constraint is in good agreement with Planck $Lambda$CDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in~citet{Alam2016} to produce the final cosmological constraints from BOSS.
We measure the sum of the neutrino particle masses using the three-dimensional galaxy power spectrum of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9 (DR9) CMASS galaxy sample. Combined with the cosmic microwave background (CMB), supernova (SN) and additional baryonic acoustic oscillation (BAO) data, we find upper 95 percent confidence limits of the neutrino mass $Sigma m_{ u}<0.340$ eV within a flat $Lambda$CDM background, and $Sigma m_{ u}<0.821$ eV, assuming a more general background cosmological model. The number of neutrino species is measured to be $N_{rm eff}=4.308pm0.794$ and $N_{rm eff}=4.032^{+0.870}_{-0.894}$ for these two cases respectively. We study and quantify the effect of several factors on the neutrino measurements, including the galaxy power spectrum bias model, the effect of redshift-space distortion, the cutoff scale of the power spectrum, and the choice of additional data. The impact of neutrinos with unknown masses on other cosmological parameter measurements is investigated. The fractional matter density and the Hubble parameter are measured to be $Omega_M=0.2796pm0.0097$, $H_0=69.72^{+0.90}_{-0.91}$ km/s/Mpc (flat $Lambda$CDM) and $Omega_M=0.2798^{+0.0132}_{-0.0136}$, $H_0=73.78^{+3.16}_{-3.17}$ km/s/Mpc (more general background model). Based on a Chevallier-Polarski-Linder (CPL) parametrisation of the equation-of-state $w$ of dark energy, we find that $w=-1$ is consistent with observations, even allowing for neutrinos. Similarly, the curvature Omega_K and the running of the spectral index $alpha_s$ are both consistent with zero. The tensor-to-scaler ratio is constrained down to $r<0.198$ (95 percent CL, flat $Lambda$ CDM) and $r<0.440$ (95 percent CL, more general background model).
We explore the benefits of using a passively evolving population of galaxies to measure the evolution of the rate of structure growth between z=0.25 and z=0.65 by combining data from the SDSS-I/II and SDSS-III surveys. The large-scale linear bias of a population of dynamically passive galaxies, which we select from both surveys, is easily modeled. Knowing the bias evolution breaks degeneracies inherent to other methodologies, and decreases the uncertainty in measurements of the rate of structure growth and the normalization of the galaxy power-spectrum by up to a factor of two. If we translate our measurements into a constraint on sigma_8(z=0) assuming a concordance cosmological model and General Relativity (GR), we find that using a bias model improves our uncertainty by a factor of nearly 1.5. Our results are consistent with a flat Lambda Cold Dark Matter model and with GR.