Do you want to publish a course? Click here

Vortices in the two-dimensional dipolar Bose gas

172   0   0.0 ( 0 )
 Added by Nicholas Parker
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present vortex solutions for the homogeneous two-dimensional Bose-Einstein condensate featuring dipolar atomic interactions, mapped out as a function of the dipolar interaction strength (relative to the contact interactions) and polarization direction. Stable vortex solutions arise in the regimes where the fully homogeneous system is stable to the phonon or roton instabilities. Close to these instabilities, the vortex profile differs significantly from that of a vortex in a nondipolar quantum gas, developing, for example, density ripples and an anisotropic core. Meanwhile, the vortex itself generates a mesoscopic dipolar potential which, at distance, scales as 1/r^2 and has an angular dependence which mimics the microscopic dipolar interaction.



rate research

Read More

We discuss fluctuations in a dilute two-dimensional Bose-condensed dipolar gas, which has a roton-maxon character of the excitation spectrum. We calculate the density-density correlation function, fluctuation corrections to the chemical potential, compressibility, and the normal (superfluid) fraction. It is shown that the presence of the roton strongly enhances fluctuations of the density, and we establish the validity criterion of the Bogoliubov approach. At T=0 the condensate depletion becomes significant if the roton minimum is sufficiently close to zero. At finite temperatures exceeding the roton energy, the effect of thermal fluctuations is stronger and it may lead to a large normal fraction of the gas and compressibility.
275 - Zhen-Kai Lu , S.I. Matveenko , 2013
We study zero sound in a weakly interacting 2D gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean field and many-body (beyond mean field) effects, and the anisotropy of the sound velocity is the same as the one of the Fermi velocity. The damping of zero sound modes can be much slower than that of quasiparticle excitations of the same energy. One thus has wide possibilities for the observation of zero sound modes in experiments with 2D fermionic dipoles, although the zero sound peak in the structure function is very close to the particle-hole continuum.
We perform a theoretical study into how dipole-dipole interactions modify the properties of superfluid vortices within the context of a two-dimensional atomic Bose gas of co-oriented dipoles. The reduced density at a vortex acts like a giant anti-dipole, changing the density profile and generating an effective dipolar potential centred at the vortex core whose most slowly decaying terms go as $1/rho^2$ and $ln(rho)/rho^3$. These effects modify the vortex-vortex interaction which, in particular, becomes anisotropic for dipoles polarized in the plane. Striking modifications to vortex-vortex dynamics are demonstrated, i.e. anisotropic co-rotation dynamics and the suppression of vortex annihilation.
Phase transitions are ubiquitous in our three-dimensional world. By contrast most conventional transitions do not occur in infinite uniform two-dimensional systems because of the increased role of thermal fluctuations. Here we explore the dimensional crossover of Bose-Einstein condensation (BEC) for a weakly interacting atomic gas confined in a novel quasi-two-dimensional geometry, with a flat in-plane trap bottom. We detect the onset of an extended phase coherence, using velocity distribution measurements and matter-wave interferometry. We relate this coherence to the transverse condensation phenomenon, in which a significant fraction of atoms accumulate in the ground state of the motion perpendicular to the atom plane. We also investigate the dynamical aspects of the transition through the detection of topological defects that are nucleated in a quench cooling of the gas, and we compare our results to the predictions of the Kibble-Zurek theory for the conventional BEC second-order phase transition.
We study the ground state of a one-dimensional (1D) trapped Bose gas with two mobile impurity particles. To investigate this set-up, we develop a variational procedure in which the coordinates of the impurity particles are slow-like variables. We validate our method using the exact results obtained for small systems. Then, we discuss energies and pair densities for systems that contain of the order of one hundred atoms. We show that bosonic non-interacting impurities cluster. To explain this clustering, we calculate and discuss induced impurity-impurity potentials in a harmonic trap. Further, we compute the force between static impurities in a ring ({it {`a} la} the Casimir force), and contrast the two effective potentials: the one obtained from the mean-field approximation, and the one due to the one-phonon exchange. Our formalism and findings are important for understanding (beyond the polaron model) the physics of modern 1D cold-atom systems with more than one impurity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا