Do you want to publish a course? Click here

Nonparametric Identification in Panels using Quantiles

313   0   0.0 ( 0 )
 Added by Ivan Fernandez-Val
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

This paper considers identification and estimation of ceteris paribus effects of continuous regressors in nonseparable panel models with time homogeneity. The effects of interest are derivatives of the average and quantile structural functions of the model. We find that these derivatives are identified with two time periods for stayers, i.e. for individuals with the same regressor values in two time periods. We show that the identification results carry over to models that allow location and scale time effects. We propose nonparametric series methods and a weighted bootstrap scheme to estimate and make inference on the identified effects. The bootstrap proposed allows uniform inference for function-valued parameters such as quantile effects uniformly over a region of quantile indices and/or regressor values. An empirical application to Engel curve estimation with panel data illustrates the results.



rate research

Read More

This paper makes several important contributions to the literature about nonparametric instrumental variables (NPIV) estimation and inference on a structural function $h_0$ and its functionals. First, we derive sup-norm convergence rates for computationally simple sieve NPIV (series 2SLS) estimators of $h_0$ and its derivatives. Second, we derive a lower bound that describes the best possible (minimax) sup-norm rates of estimating $h_0$ and its derivatives, and show that the sieve NPIV estimator can attain the minimax rates when $h_0$ is approximated via a spline or wavelet sieve. Our optimal sup-norm rates surprisingly coincide with the optimal root-mean-squared rates for severely ill-posed problems, and are only a logarithmic factor slower than the optimal root-mean-squared rates for mildly ill-posed problems. Third, we use our sup-norm rates to establish the uniform Gaussian process strong approximations and the score bootstrap uniform confidence bands (UCBs) for collections of nonlinear functionals of $h_0$ under primitive conditions, allowing for mildly and severely ill-posed problems. Fourth, as applications, we obtain the first asymptotic pointwise and uniform inference results for plug-in sieve t-statistics of exact consumer surplus (CS) and deadweight loss (DL) welfare functionals under low-level conditions when demand is estimated via sieve NPIV. Empiricists could read our real data application of UCBs for exact CS and DL functionals of gasoline demand that reveals interesting patterns and is applicable to other markets.
170 - Linglong Kong , Ivan Mizera 2013
The use of quantiles to obtain insights about multivariate data is addressed. It is argued that incisive insights can be obtained by considering directional quantiles, the quantiles of projections. Directional quantile envelopes are proposed as a way to condense this kind of information; it is demonstrated that they are essentially halfspace (Tukey) depth levels sets, coinciding for elliptic distributions (in particular multivariate normal) with density contours. Relevant questions concerning their indexing, the possibility of the reverse retrieval of directional quantile information, invariance with respect to affine transformations, and approximation/asymptotic properties are studied. It is argued that the analysis in terms of directional quantiles and their envelopes offers a straightforward probabilistic interpretation and thus conveys a concrete quantitative meaning; the directional definition can be adapted to elaborate frameworks, like estimation of extreme quantiles and directional quantile regression, the regression of depth contours on covariates. The latter facilitates the construction of multivariate growth charts---the question that motivated all the development.
We argue that randomized controlled trials (RCTs) are special even among settings where average treatment effects are identified by a nonparametric unconfoundedness assumption. This claim follows from two results of Robins and Ritov (1997): (1) with at least one continuous covariate control, no estimator of the average treatment effect exists which is uniformly consistent without further assumptions, (2) knowledge of the propensity score yields a consistent estimator and confidence intervals at parametric rates, regardless of how complicated the propensity score function is. We emphasize the latter point, and note that successfully-conducted RCTs provide knowledge of the propensity score to the researcher. We discuss modern developments in covariate adjustment for RCTs, noting that statistical models and machine learning methods can be used to improve efficiency while preserving finite sample unbiasedness. We conclude that statistical inference has the potential to be fundamentally more difficult in observational settings than it is in RCTs, even when all confounders are measured.
When comparing two distributions, it is often helpful to learn at which quantiles or values there is a statistically significant difference. This provides more information than the binary reject or do not reject decision of a global goodness-of-fit test. Framing our question as multiple testing across the continuum of quantiles $tauin(0,1)$ or values $rinmathbb{R}$, we show that the Kolmogorov--Smirnov test (interpreted as a multiple testing procedure) achieves strong control of the familywise error rate. However, its well-known flaw of low sensitivity in the tails remains. We provide an alternative method that retains such strong control of familywise error rate while also having even sensitivity, i.e., equal pointwise type I error rates at each of $ntoinfty$ order statistics across the distribution. Our one-sample method computes instantly, using our new formula that also instantly computes goodness-of-fit $p$-values and uniform confidence bands. To improve power, we also propose stepdown and pre-test procedures that maintain control of the asymptotic familywise error rate. One-sample and two-sample cases are considered, as well as extensions to regression discontinuity designs and conditional distributions. Simulations, empirical examples, and code are provided.
We develop a new approach for identifying and estimating average causal effects in panel data under a linear factor model with unmeasured confounders. Compared to other methods tackling factor models such as synthetic controls and matrix completion, our method does not require the number of time periods to grow infinitely. Instead, we draw inspiration from the two-way fixed effect model as a special case of the linear factor model, where a simple difference-in-differences transformation identifies the effect. We show that analogous, albeit more complex, transformations exist in the more general linear factor model, providing a new means to identify the effect in that model. In fact many such transformations exist, called bridge functions, all identifying the same causal effect estimand. This poses a unique challenge for estimation and inference, which we solve by targeting the minimal bridge function using a regularized estimation approach. We prove that our resulting average causal effect estimator is root-N consistent and asymptotically normal, and we provide asymptotically valid confidence intervals. Finally, we provide extensions for the case of a linear factor model with time-varying unmeasured confounders.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا