Topological invariants, surface states, and interaction-driven phase transitions in correlated Kondo insulators with cubic symmetry


Abstract in English

We construct a lattice model for a cubic Kondo insulator consisting of one spin-degenerate $d$ and $f$ orbital at each lattice site. The odd-parity hybridization between the two orbitals permits us to obtain various trivial and topological insulating phases, which we classify in the presence of cubic symmetry. In particular, depending on the choice of our model parameters, we find a strong topological insulator phase with a band inversion at the $mathrm{X}$ point, modeling the situation potentially realized in SmB$_6$, and a topological crystalline insulator phase with trivial $mathbb{Z}_2$ indices but nonvanishing mirror Chern numbers. Using the Kotliar-Ruckenstein slave-boson scheme, we further demonstrate how increasing interactions among $f$ electrons can lead to topological phase transitions. Remarkably, for fixed band parameters, the $f$-orbital occupation number at the topological transitions is essentially independent of the interaction strength, thus yielding a robust criterion to discriminate between different phases.

Download