Do you want to publish a course? Click here

Robust exponential attractors for the modified phase-field crystal equation

251   0   0.0 ( 0 )
 Added by Maurizio Grasselli
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We consider the modified phase-field crystal (MPFC) equation that has recently been proposed by P. Stefanovic et al. This is a variant of the phase-field crystal (PFC) equation, introduced by K.-R. Elder et al., which is characterized by the presence of an inertial term $betaphi_{tt}$. Here $phi$ is the phase function standing for the number density of atoms and $betageq 0$ is a relaxation time. The associated dynamical system for the MPFC equation with respect to the parameter $beta$ is analyzed. More precisely, we establish the existence of a family of exponential attractors $mathcal{M}_beta$ that are Holder continuous with respect to $beta$.



rate research

Read More

130 - Maurizio Grasselli , Hao Wu 2013
We consider a modification of the so-called phase-field crystal (PFC) equation introduced by K.R. Elder et al. This variant has recently been proposed by P. Stefanovic et al. to distinguish between elastic relaxation and diffusion time scales. It consists of adding an inertial term (i.e. a second-order time derivative) into the PFC equation. The mathematical analysis of the resulting equation is more challenging with respect to the PFC equation, even at the well-posedness level. Moreover, its solutions do not regularize in finite time as in the case of PFC equation. Here we analyze the modified PFC (MPFC) equation endowed with periodic boundary conditions. We first prove the existence and uniqueness of a solution with initial data in a bounded energy space. This solution satisfies some uniform dissipative estimates which allow us to study the global longtime behavior of the corresponding dynamical system. In particular, we establish the existence of an exponential attractor. Then we demonstrate that any trajectory originating from the bounded energy phase space does converge to a unique equilibrium. This is done by means of a suitable version of the {L}ojasiewicz-Simon inequality. A convergence rate estimate is also given.
137 - Giulio Schimperna 2008
The Penrose-Fife system for phase transitions is addressed. Dirichlet boundary conditions for the temperature are assumed. Existence of global and exponential attractors is proved. Differently from preceding contributions, here the energy balance equation is both singular at 0 and degenerate at infinity. For this reason, the dissipativity of the associated dynamical process is not trivial and has to be proved rather carefully.
In this paper we present two unconditionally energy stable finite difference schemes for the Modified Phase Field Crystal (MPFC) equation, a sixth-order nonlinear damped wave equation, of which the purely parabolic Phase Field Crystal (PFC) model can be viewed as a special case. The first is a convex splitting scheme based on an appropriate decomposition of the discrete energy and is first order accurate in time and second order accurate in space. The second is a new, fully second-order scheme that also respects the convex splitting of the energy. Both schemes are nonlinear but may be formulated from the gradients of strictly convex, coercive functionals. Thus, both are uniquely solvable regardless of the time and space step sizes. The schemes are solved by efficient nonlinear multigrid methods. Numerical results are presented demonstrating the accuracy, energy stability, efficiency, and practical utility of the schemes. In particular, we show that our multigrid solvers enjoy optimal, or nearly optimal complexity in the solution of the nonlinear schemes.
We consider a model for the evolution of a mixture of two incompressible and partially immiscible Newtonian fluids in two dimensional bounded domain. More precisely, we address the well-known model H consisting of the Navier-Stokes equation with non-autonomous external forcing term for the (average) fluid velocity, coupled with a convective Cahn-Hilliard equation with polynomial double-well potential describing the evolution of the relative density of atoms of one of the fluids. We study the long term behavior of solutions and prove that the system possesses a pullback exponential attractor. In particular the regularity estimates we obtain depend on the initial data only through fixed powers of their norms and these powers are uniform with respect to the growth of the polynomial potential considered in the Cahn-Hilliard equation.
We present a new method of investigating the so-called quasi-linear strongly damped wave equations $$ partial_t^2u-gammapartial_tDelta_x u-Delta_x u+f(u)= abla_xcdot phi( abla_x u)+g $$ in bounded 3D domains. This method allows us to establish the existence and uniqueness of energy solutions in the case where the growth exponent of the non-linearity $phi$ is less than 6 and $f$ may have arbitrary polynomial growth rate. Moreover, the existence of a finite-dimensional global and exponential attractors for the solution semigroup associated with that equation and their additional regularity are also established. In a particular case $phiequiv0$ which corresponds to the so-called semi-linear strongly damped wave equation, our result allows to remove the long-standing growth restriction $|f(u)|leq C(1+ |u|^5)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا