Do you want to publish a course? Click here

AGN X-ray variability in the XMM-COSMOS survey

152   0   0.0 ( 0 )
 Added by Giorgio Lanzuisi
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We took advantage of the observations carried out by XMM in the COSMOS field during 3.5 years, to study the long term variability of a large sample of AGN (638 sources), in a wide range of redshift (0.1<z<3.5) and X-ray luminosity ($10^{41}<$L(2-10)$<10^{45.5}$). Both a simple statistical method to asses the significance of variability, and the Normalized Excess Variance ($sigma^{2}_{rms}$) parameter, where used to obtain a quantitative measurement of the variability. Variability is found to be prevalent in most AGN, whenever we have good statistic to measure it, and no significant differences between type-1 and type-2 AGN were found. A flat (slope -0.23+/-0.03) anti-correlation between $sigma^{2}_{rms}$ and X-ray luminosity is found, when significantly variable sources are considered all together. When divided in three redshift bins, the anti-correlation becomes stronger and evolving with z, with higher redshift AGN being more variable. We prove however that this effect is due to the pre-selection of variable sources: considering all the sources with available $sigma^{2}_{rms}$ measurement, the evolution in redshift disappears. For the first time we were also able to study the long term X-ray variability as a function of $M_{rm BH}$ and Eddington ratio, for a large sample of AGN spanning a wide range of redshift. An anti-correlation between $sigma^{2}_{rms}$ and $M_{rm BH}$ is found, with the same slope of the anti-correlation between $sigma^{2}_{rms}$ and X-ray luminosity, suggesting that the latter can be a byproduct of the former one. No clear correlation is found between $sigma^{2}_{rms}$ and the Eddington ratio in our sample. Finally, no correlation is found between the X-ray $sigma^{2}_{rms}$ and the optical variability.



rate research

Read More

Heavily obscured, Compton Thick (CT, NH>10^24 cm^-2) AGN may represent an important phase in AGN/galaxy co-evolution and are expected to provide a significant contribution to the cosmic X-ray background (CXB). Through direct X-ray spectra analysis, we selected 39 heavily obscured AGN (NH>3x10^23 cm^-2) in the 2 deg^2 XMM-COSMOS survey. After selecting CT AGN based on the fit of a simple absorbed two power law model to the XMM data, the presence of CT AGN was confirmed in 80% of the sources using deeper Chandra data and more complex models. The final sample of CT AGN comprises 10 sources spanning a large range of redshift and luminosity. We collected the multi-wavelength information available for all these sources, in order to study the distribution of SMBH and host properties, such as BH mass (M_BH), Eddington ratio (lambda_Edd), stellar mass (M*), specific star formation rate (sSFR) in comparison with a sample of unobscured AGN. We find that highly obscured sources tend to have significantly smaller M_BH and higher lambda_edd with respect to unobscured ones, while a weaker evolution in M* is observed. The sSFR of highly obscured sources is consistent with the one observed in the main sequence of star forming galaxies, at all redshift. We also present optical spectra, spectral energy distribution (SED) and morphology for the sample of 10 CT AGN: all the available optical spectra are dominated by the stellar component of the host galaxy, and a highly obscured torus component is needed in the SED of the CT sources. Exploiting the high resolution Hubble-ACS images available, we conclude that these highly obscured sources have a significantly larger merger fraction with respect to other X-ray selected samples of AGN. Finally we discuss implications in the context of AGN/galaxy co-evolutionary models, and compare our results with the predictions of CXB synthesis models.
555 - M. Elvis , H. Hao , F. Civano 2012
The Cosmic Evolution Survey (COSMOS) enables the study of the Spectral Energy Distributions (SEDs) of Active Galactic Nuclei (AGN) because of the deep coverage and rich sampling of frequencies from X-ray to radio. Here we present a SED catalog of 413 X-ray (xmm) selected type 1 (emission line FWHM$>2000$ km s$^{-1}$) AGN with Magellan, SDSS or VLT spectrum. The SEDs are corrected for the Galactic extinction, for broad emission line contributions, constrained variability, and for host galaxy contribution. We present the mean SED and the dispersion SEDs after the above corrections in the rest frame 1.4 GHz to 40 keV, and show examples of the variety of SEDs encountered. In the near-infrared to optical (rest frame $sim 8mu m$-- 4000AA), the photometry is complete for the whole sample and the mean SED is derived from detections only. Reddening and host galaxy contamination could account for a large fraction of the observed SED variety. The SEDs are all available on-line.
144 - M. Brusa 2010
We report the final optical identifications of the medium-depth (~60 ksec), contiguous (2 deg^2) XMM-Newton survey of the COSMOS field. XMM-Newton has detected ~800 X-ray sources down to limiting fluxes of ~5x10^{-16}, ~3x10^{-15}, and ~7x10^{-15} erg/cm2/s in the 0.5-2 keV, 2-10 keV and 5-10 keV bands, respectively. The work is complemented by an extensive collection of multi-wavelength data from 24 micron to UV, available from the COSMOS survey, for each of the X-ray sources, including spectroscopic redshifts for ~50% of the sample, and high-quality photometric redshifts for the rest. The XMM and multiwavelength flux limits are well matched: 1760 (98%) of the X-ray sources have optical counterparts, 1711 (~95%) have IRAC counterparts, and 1394 (~78%) have MIPS 24micron detections. Thanks to the redshift completeness (almost 100%) we were able to constrain the high-luminosity tail of the X-ray luminosity function confirming that the peak of the number density of logL_X>44.5 AGN is at z~2. Spectroscopically-identified obscured and unobscured AGN, as well as normal and starforming galaxies, present well-defined optical and infrared properties. We devised a robust method to identify a sample of ~150 high redshift (z>1), obscured AGN candidates for which optical spectroscopy is not available. We were able to determine that the fraction of the obscured AGN population at the highest (L_X>10^{44} erg s^{-1}) X-ray luminosity is ~15-30% when selection effects are taken into account, providing an important observational constraint for X-ray background synthesis. We studied in detail the optical spectrum and the overall spectral energy distribution of a prototypical Type 2 QSO, caught in a stage transitioning from being starburst dominated to AGN dominated, which was possible to isolate only thanks to the combination of X-ray and infrared observations.
We present a study of the multi-wavelength properties, from the mid-infrared to the hard X-rays, of a sample of 255 spectroscopically identified X-ray selected Type-2 AGN from the XMM-COSMOS survey. Most of them are obscured the X-ray absorbing column density is determined by either X-ray spectral analyses (for the 45% of the sample), or from hardness ratios. Spectral Energy Distributions (SEDs) are computed for all sources in the sample. The average SEDs in the optical band is dominated by the host-galaxy light, especially at low X-ray luminosities and redshifts. There is also a trend between X-ray and mid-infrared luminosity: the AGN contribution in the infrared is higher at higher X-ray luminosities. We calculate bolometric luminosities, bolometric corrections, stellar masses and star formation rates (SFRs) for these sources using a multi-component modeling to properly disentangle the emission associated to stellar light from that due to black hole accretion. For 90% of the sample we also have the morphological classifications obtained with an upgraded version of the Zurich Estimator of Structural Types (ZEST+). We find that on average Type-2 AGN have lower bolometric corrections than Type-1 AGN. Moreover, we confirm that the morphologies of AGN host-galaxies indicate that there is a preference for these Type-2 AGN to be hosted in bulge-dominated galaxies with stellar masses greater than 10^10 solar masses.
We present optical spectroscopy for an X-ray and optical flux-limited sample of 677 XMM-Newton selected targets covering the 2 deg^2 COSMOS field, with a yield of 485 high-confidence redshifts. The majority of the spectra were obtained over three seasons (2005-2007) with the IMACS instrument on the Magellan (Baade) telescope. We also include in the sample previously published Sloan Digital Sky Survey spectra and supplemental observations with MMT/Hectospec. We detail the observations and classification analyses. The survey is 90% complete to flux limits of f_{0.5-10 keV}>8 x 10^-16 erg cm^-2 s^-1 and i_AB+<22, where over 90% of targets have high-confidence redshifts. Making simple corrections for incompleteness due to redshift and spectral type allows for a description of the complete population to $i_AB+<23. The corrected sample includes 57% broad emission line (Type 1, unobscured) AGN at 0.13<z<4.26, 25% narrow emission line (Type 2, obscured) AGN at 0.07<z<1.29, and 18% absorption line (host-dominated, obscured) AGN at 0<z<1.22 (excluding the stars that made up 4% of the X-ray targets). We show that the surveys limits in X-ray and optical flux include nearly all X-ray AGN (defined by L_{0.5-10 keV}>3 x 10^42 erg s^-1) to z<1, of both optically obscured and unobscured types. We find statistically significant evidence that the obscured to unobscured AGN ratio at z<1 increases with redshift and decreases with luminosity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا