Do you want to publish a course? Click here

Spin-transfer assisted thermally activated switching distributions in perpendicularly magnetized spin valve nanopillars

113   0   0.0 ( 0 )
 Added by Daniel Gopman
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present switching field distributions of spin-transfer assisted magnetization reversal in perpendicularly magnetized Co/Ni multilayer spin-valve nanopillars at room temperature. Switching field measurements of the Co/Ni free layer of spin-valve nanopillars with a 50 nm x 300 nm ellipse cross section were conducted as a function of current. The validity of a model that assumes a spin-current dependent effective barrier for thermally activated reversal is tested by measuring switching field distributions under applied direct currents. We show that the switching field distributions deviate significantly from the double exponential shape predicted by the effective barrier model, beginning at applied currents as low as half of the zero field critical current. Barrier heights extracted from switching field distributions for currents below this threshold are a monotonic function of the current. However, the thermally-induced switching model breaks down for currents exceeding the critical threshold.



rate research

Read More

97 - D. B. Gopman , D. Bedau , G. Wolf 2013
We present temperature dependent switching measurements of the Co/Ni multilayered free element of 75 nm diameter spin-valve nanopillars. Angular dependent hysteresis measurements as well as switching field measurements taken at low temperature are in agreement with a model of thermal activation over a perpendicular anisotropy barrier. However, the statistics of switching (mean switching field and switching variance) from 20 K up to 400 K are in disagreement with a N{e}el-Brown model that assumes a temperature independent barrier height and anisotropy field. We introduce a modified N{e}el-Brown model thats fit the experimental data in which we take a $T^{3/2}$ dependence to the barrier height and the anisotropy field due to the temperature dependent magnetization and anisotropy energy.
170 - D. Bedau , H. Liu , J. Z. Sun 2010
The effect of thermal fluctuations on spin-transfer switching has been studied for a broad range of time scales (sub-ns to seconds) in a model system, a uniaxial thin film nanomagnet. The nanomagnet is incorporated into a spin-valve nanopillar, which is subject to spin-polarized current pulses of variable amplitude and duration. Two physical regimes are clearly distinguished: a long pulse duration regime, in which reversal occurs by spin-transfer assisted thermal activation over an energy barrier, and a short time large pulse amplitude regime, in which the switching probability is determined by the spin angular momentum in the current pulse.
116 - J. Peguiron , M.-S. Choi , 2006
We consider a quasi one-dimensional configuration consisting of two small pieces of ferromagnetic material separated by a metallic one and contacted by two metallic leads. A spin-polarized current is injected from one lead. Our goal is to investigate the correlation induced between the magnetizations of the two ferromagnets by spin-transfer torque. This torque results from the interaction between the magnetizations and the spin polarization of the current. We discuss the dynamics of a single ferromagnet, the extension to the case of two ferromagnets, and give some estimates for the parameters based on experiments.
We study the role of thermal fluctuations on the spin dynamics of a thin permalloy film with a focus on the behavior of spin torque and find that the thermally assisted spin torque results in new aspects of the magnetization dynamics. In particular, we uncover the formation of a finite, spin torque-induced, in-plane magnetization component. The orientation of the in-plane magnetization vector depends on the temperature and the spin-torque coupling. We investigate and illustrate that the variation of the temperature leads to a thermally-induced rotation of the in-plane magnetization.
Understanding the magnetization dynamics induced by spin transfer torques in perpendicularly magnetized magnetic tunnel junction nanopillars and its dependence on material parameters is critical to optimizing device performance. Here we present a micromagnetic study of spin-torque switching in a disk-shaped element as a function of the free layers exchange constant and disk diameter. The switching is shown to generally occur by 1) growth of the magnetization precession amplitude in the element center; 2) an instability in which the reversing region moves to the disk edge, forming a magnetic domain wall; and 3) the motion of the domain wall across the element. For large diameters and small exchange, step 1 leads to a droplet with a fully reversed core that experiences a drift instability (step 2). While in the opposite case (small diameters and large exchange), the central region of the disk is not fully reversed before step 2 occurs. The origin of the micromagnetic structure is shown to be the disks non-uniform demagnetization field. Faster, more coherence and energy efficient switching occur with larger exchange and smaller disk diameters, showing routes to increase device performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا