Synthesis and optical properties of large-scale single-crystalline two-dimensional semiconductor WS2 monolayer from chemical vapor deposition


Abstract in English

Two-dimensional (2D) transition metal dichalcogenides (TMDs), especially MoS2 and WS2 recently attract extensive attentions due to their rich physics and great potential applications. Superior to graphene, MS2 (M = Mo/W) monolayers have a native direct energy gap in visible frequency range. This promises great future of MS2 for optoelectronics. To exploit properties and further develop more applications, producing large-scale single crystals of MS2 by a facile method is highly demanded. Here, we report the synthesis of large-scale triangular single crystals of WS2 monolayer from a chemical vapor deposition process and systematic optical studies of such WS2 monolayers. The observations of high yield of light emission and valley-selective circular dichroism experimentally evidence the high optical quality of the WS2 monolayers. This work paves the road to fabricate large-scale single crystalline 2D semiconductors and study their fundamentals. It must be very meaningful for exploiting great potentials of WS2 for future optoelectronics.

Download