No Arabic abstract
We report differential photometric observations and radial-velocity measurements of the detached, 1.69-day period, double-lined eclipsing binary AQ Ser. Accurate masses and radii for the components are determined to better than 1.8% and 1.1%, respectively, and are M1 = 1.417 +/- 0.021 MSun, M2 = 1.346 +/- 0.024 MSun, R1 = 2.451 +/- 0.027 RSun, and R2 = 2.281 +/- 0.014 RSun. The temperatures are 6340 +/- 100 K (spectral type F6) and 6430 +/- 100 K (F5), respectively. Both stars are considerably evolved, such that predictions from stellar evolution theory are particularly sensitive to the degree of extra mixing above the convective core (overshoot). The component masses are different enough to exclude a location in the H-R diagram past the point of central hydrogen exhaustion, which implies the need for extra mixing. Moreover, we find that current main-sequence models are unable to match the observed properties at a single age even when allowing the unknown metallicity, mixing length parameter, and convective overshooting parameter to vary freely and independently for the two components. The age of the more massive star appears systematically younger. AQ Ser and other similarly evolved eclipsing binaries showing the same discrepancy highlight an outstanding and largely overlooked problem with the description of overshooting in current stellar theory.
Classical Cepheids are powerful probes of both stellar evolution and near-field cosmology thanks to their high luminosities, pulsations, and that they follow the Leavitt (Period-Luminosity) Law. However, there still exist a number of questions regarding their evolution, such as the role of rotation, convective core overshooting and winds. ln particular, how do these processes impact Cepheid evolution and the predicted fundamental properties such as stellar mass. In this work, we compare a sample of period change that are real-time observations of stellar evolution with new evolution models to test the impact of these first two processes. In our previous study we found that enhanced mass loss is crucial for describing the sample, and here we continue that analysis but for rotational mixing and core overshooting. We show that, while rotation is important for stellar evolution studies, rotation, itself, is insufficient to model the distribution of period change rates from the observed sample. On the other hand, convective core overshooting is needed to explain the magnitude of the rates of period change, but does not explain the number of stars with positive and negative period change rates. In conclusion, we determine that convective core overshooting and stellar rotation alone are not enough to account for the observed distribution of Cepheid rates of period change and another mechanism, such as pulsation-driven mass-loss, may be required.
We report extensive photometric and spectroscopic observations of the 6.1-day period, G+M-type detached double-lined eclipsing binary V530 Ori, an important new benchmark system for testing stellar evolution models for low-mass stars. We determine accurate masses and radii for the components with errors of 0.7% and 1.3%, as follows: M(A) = 1.0038 +/- 0.0066 M(sun), M(B) = 0.5955 +/- 0.0022 M(sun), R(A) = 0.980 +/- 0.013 R(sun), and R(B) = 0.5873 +/- 0.0067 R(sun). The effective temperatures are 5890 +/- 100 K (G1V) and 3880 +/- 120 K (M1V), respectively. A detailed chemical analysis probing more than 20 elements in the primary spectrum shows the system to have a slightly subsolar abundance, with [Fe/H] = -0.12 +/- 0.08. A comparison with theory reveals that standard models underpredict the radius and overpredict the temperature of the secondary, as has been found previously for other M dwarfs. On the other hand, models from the Dartmouth series incorporating magnetic fields are able to match the observations of the secondary star at the same age as the primary (3 Gyr) with a surface field strength of 2.1 +/- 0.4 kG when using a rotational dynamo prescription, or 1.3 +/- 0.4 kG with a turbulent dynamo approach, not far from our empirical estimate for this star of 0.83 +/- 0.65 kG. The observations are most consistent with magnetic fields playing only a small role in changing the global properties of the primary. The V530 Ori system thus provides an important demonstration that recent advances in modeling appear to be on the right track to explain the long-standing problem of radius inflation and temperature suppression in low-mass stars.
Convective core overshooting extends the main-sequence lifetime of a star. Evolutionary tracks computed with overshooting are quite different from those that use the classical Schwarzschild criterion, which leads to rather different predictions for the stellar properties. Attempts over the last two decades to calibrate the degree of overshooting with stellar mass using detached double-lined eclipsing binaries have been largely inconclusive, mainly due to a lack of suitable observational data. Here we revisit the question of a possible mass dependence of overshooting with a more complete sample of binaries, and examine any additional relation there might be with evolutionary state or metal abundance Z. We use a carefully selected sample of 33 double-lined eclipsing binaries strategically positioned in the H-R diagram, with accurate absolute dimensions and component masses ranging from 1.2 to 4.4 solar masses. We compare their measured properties with stellar evolution calculations to infer semi-empirical values of the overshooting parameter alpha(ov) for each star. Our models use the common prescription for the overshoot distance d(ov) = alpha(ov) Hp, where Hp is the pressure scale height at the edge of the convective core as given by the Schwarzschild criterion, and alpha(ov) is a free parameter. We find a relation between alpha(ov) and mass that is defined much more clearly than in previous work, and indicates a significant rise up to about 2 solar masses followed by little or no change beyond this mass. No appreciable dependence is seen with evolutionary state at a given mass, or with metallicity at a given mass despite the fact that the stars in our sample span a range of a factor of ten in [Fe/H], from -1.01 to +0.01.
Many current stellar evolution models assume some dependence of the strength of convective core overshooting on mass for stars more massive than 1.1-1.2 solar masses, but the adopted shapes for that relation have remained somewhat arbitrary for lack of strong observational constraints. In previous work we compared stellar evolution models to well-measured eclipsing binaries to show that, when overshooting is implemented as a diffusive process, the fitted free parameter f(ov) rises sharply up to about 2 solar masses, and remains largely constant thereafter. Here we analyze a new sample of eight binaries selected to be in the critical mass range below 2 solar masses where f(ov) is changing the most, nearly doubling the number of individual stars in this regime. This interval is important because the precise way in which f(ov) changes determines the shape of isochrones in the turnoff region of 1-5 Gyr clusters, and can thus affect their inferred ages. It also has a significant influence on estimates of stellar properties for exoplanet hosts, on stellar population synthesis, and on the detailed modeling of interior stellar structures, including the calculation of oscillation frequencies that are observable with asteroseismic techniques. We find that the derived f(ov) values for our new sample are consistent with the trend defined by our earlier determinations, and strengthen the relation. This provides an opportunity for future series of models to test the new prescription, grounded on observations, against independent observations that may constrain overshooting in a different way.
As part of a larger program aimed at better quantifying the uncertainties in stellar computations, we attempt to calibrate the extent of convective overshooting in low to intermediate mass stars by means of eclipsing binary systems. We model 12 such systems, with component masses between 1.3 and 6.2 solar masses, using the detailed binary stellar evolution code STARS, producing grids of models in both metallicity and overshooting parameter. From these, we determine the best fit parameters for each of our systems. For three systems, none of our models produce a satisfactory fit. For the remaining systems, no single value for the convective overshooting parameter fits all the systems, but most of our systems can be well described with an overshooting parameter between 0.09 and 0.15, corresponding to an extension of the mixed region above the core of about 0.1-0.3 pressure scale heights. Of the nine systems where we are able to obtain a good fit, seven can be reasonably well fit with a single parameter of 0.15. We find no evidence for a trend of the extent of overshooting with either mass or metallicity, though the data set is of limited size. We repeat our calculations with a second evolution code, MESA, and we find general agreement between the two codes. For the extension of the mixed region above the convective core required by the MESA models is about 0.15-0.4 pressure scale heights. For the system EI Cep, we find that MESA gives an overshooting region that is larger than the STARS one by about 0.1 pressure scale heights for the primary, while for the secondary the difference is only 0.05 pressure scale heights.