Probing the z>6 Universe with the first Hubble Frontier Fields cluster Abell 2744


Abstract in English

The Hubble Frontier Fields (HFF) program combines the capabilities of the Hubble Space Telescope (HST) with the gravitational lensing of massive galaxy clusters to probe the distant Universe to an unprecedented depth. Here, we present the results of the first combined HST and Spitzer observations of the cluster Abell 2744. We combine the full near-infrared data with ancillary optical images to search for gravitationally lensed high-redshift (z > 6) galaxies. We report the detection of 15 I814-dropout candidates at z ~ 6-7 and one Y105-dropout at z ~ 8 in a total survey area of 1.43 arcmin^2 in the source plane. The predictions of our lens model allow us to also identify five multiply-imaged systems lying at redshifts between z ~ 6 and z ~ 8. Thanks to constraints from the mass distribution in the cluster, we were able to estimate the effective survey volume corrected for completeness and magnification effects. This was in turn used to estimate the rest-frame ultraviolet luminosity function (LF) at z ~ 6-8. Our LF results are generally in agreement with the most recent blank field estimates, confirming the feasibility of surveys through lensing clusters. Although based on a shallower observations than what will be achieved in the final dataset including the full ACS observations, the LF presented here extends down to Muv ~ -18.5 at z ~ 7 with one identified object at Muv ~ -15 thanks to the highly-magnified survey areas. This early study forecasts the power of using massive galaxy clusters as cosmic telescopes and its complementarity to blank fields.

Download