Do you want to publish a course? Click here

Structural, electronic, vibrational and dielectric properties of LaBGeO$_5$ from first principles

412   0   0.0 ( 0 )
 Added by Riad Shaltaf
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Structural, electronic, vibrational and dielectric properties of LaBGeO$_5$ with the stillwellite structure are determined based on textit{ab initio} density functional theory. The theoretically relaxed structure is found to agree well with the existing experimental data with a deviation of less than $0.2%$. Both the density of states and the electronic band structure are calculated, showing five distinct groups of valence bands. Furthermore, the Born effective charge, the dielectric permittivity tensors, and the vibrational frequencies at the center of the Brillouin zone are all obtained. Compared to existing model calculations, the vibrational frequencies are found in much better agreement with the published experimental infrared and Raman data, with absolute and relative rms values of 6.04 cm$^{-1}$, and $1.81%$, respectively. Consequently, numerical values for both the parallel and perpendicular components of the permittivity tensor are established as 3.55 and 3.71 (10.34 and 12.28), respectively, for the high-(low-)frequency limit.



rate research

Read More

Lithium metasilicate (Li2SiO3) has attracted considerable interest as a promising electrolyte material for potential use in lithium batteries. However, its electronic properties are still not thoroughly understood. In this work, density functional theory calculations were adopted, our calculations find out that Li2SiO3 exhibits unique lattice symmetry (orthorhombic crystal), valence and conduction bands, charge density distribution, and van Hove singularities. Delicate analyses, the critical multi-orbital hybridizations in Li-O and Si-O bonds 2s- (2s, 2px, 2py, 2pz) and (3s, 3px, 3py, 3pz)- (2s, 2px, 2py, 2pz), respectively was identified. In particular, this system shows a huge indirect-gap of 5.077 eV. Therefore, there exist many strong covalent bonds, with obvious anisotropy and non-uniformity. On the other hand, the spin-dependent magnetic configurations are thoroughly absent. The theoretical framework could be generalized to explore the essential properties of cathode and anode materials of oxide compounds.
SnSe monolayer with orthorhombic Pnma GeS structure is an important two-dimensional (2D) indirect band gap material at room temperature. Based on first-principles density functional theory calculations, we present systematic studies on the electronic and magnetic properties of X (X = Ga, In, As, Sb) atoms doped SnSe monolayer. The calculated electronic structures show that Ga-doped system maintains semiconducting property while In-doped SnSe monolayer is half-metal. The As- and Sb- doped SnSe systems present the characteristics of n-type semiconductor. Moreover, all considered substitutional doping cases induce magnetic ground states with the magnetic moment of 1{mu}B. In addition, the calculated formation energies also show that four types of doped systems are thermodynamic stable. These results provide a new route for the potential applications of doped SnSe monolayer in 2D photoelectronic and magnetic semiconductor devices.
Using first-principles calculations within the generalized gradient approximation, we predicted the lattice parameters, elastic constants, vibrational properties, and electronic structure of cementite (Fe3C). Its nine single-crystal elastic constants were obtained by computing total energies or stresses as a function of applied strain. Furthermore, six of them were determined from the initial slopes of the calculated longitudinal and transverse acoustic phonon branches along the [100], [010] and [001] directions. The three methods agree well with each other, the calculated polycrystalline elastic moduli are also in good overall agreement with experiments. Our calculations indicate that Fe3C is mechanically stable. The experimentally observed high elastic anisotropy of Fe3C is also confirmed by our study. Based on electronic density of states and charge density distribution, the chemical bonding in Fe3C was analyzed and was found to exhibit a complex mixture of metallic, covalent, and ionic characters.
We present a theoretical study using density functional calculations of the structural, electronic and magnetic properties of 3d transition metal, noble metal and Zn atoms interacting with carbon monovacancies in graphene. We pay special attention to the electronic and magnetic properties of these substitutional impurities and found that they can be fully understood using a simple model based on the hybridization between the states of the metal atom, particularly the d shell, and the defect levels associated with an unreconstructed D3h carbon vacancy. We identify three different regimes associated with the occupation of different carbon-metal hybridized electronic levels: (i) bonding states are completely filled for Sc and Ti, and these impurities are non-magnetic; (ii) the non-bonding d shell is partially occupied for V, Cr and Mn and, correspondingly, these impurties present large and localized spin moments; (iii) antibonding states with increasing carbon character are progressively filled for Co, Ni, the noble metals and Zn. The spin moments of these impurities oscillate between 0 and 1 Bohr magnetons and are increasingly delocalized. The substitutional Zn suffers a Jahn-Teller-like distortion from the C3v symmetry and, as a consequence, has a zero spin moment. Fe occupies a distinct position at the border between regimes (ii) and (iii) and shows a more complex behavior: while is non-magnetic at the level of GGA calculations, its spin moment can be switched on using GGA+U calculations with moderate values of the U parameter.
Recently, the two-dimensional (2D) materials have become potential candidates for various technological applications in spintronics and optoelectronics soon after the discovery of graphene from the mechanical exfoliation of graphite. In the present study, the structural, electronic, and phase stability of layered quasi-2D ZnSb compounds have been tuned using the first principle calculations based on density functional theory (DFT). We invoked the Perdew-Burke-Ernzerhof (PBE) functional and the projected augmented wave (PAW) method during all the calculations. Based on our numerical results, the novel tetragonal phase of 2D-ZnSb is the most stable phase among the quasi-2D structures. We reported the pressure-induced phase transition between orthorhombic 3D-ZnSb to tetragonal 2D-ZnSb at 12.48 GPa/atom. The projected density of states indicates the strong p-d hybridization between Sb-5p and Zn-3d states confirming the nature of strong covalent bonding between them. We predicted the possibility of the monolayer in tetragonal 2D-ZnSb and orthorhombic 3D-ZnSb according to the exfoliation energy criterion. The electronic band structures suggest the metallic characteristics of all the quasi-2D structures. In addition, the monolayer of 3D-ZnSb has been predicted to be dynamically stable as manifested in phonon dispersion bands. Surprisingly, the semiconducting bandgap nature of orthorhombic 3D-ZnSb changes from indirect and narrow to direct and sizable while going from 3D bulk to 2D monolayer. Further, we estimated the value of work functions for the surface of t-ZnSb (quasi-2D) and o-ZnSb (3D) as 4.61 eV and 4.04 eV respectively. Such materials can find niche applications in next-generation electronic devices utilizing 2D heterostructures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا