Do you want to publish a course? Click here

Raman spectra of electrochemically hydrogenated diamond like carbon surface

153   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Raman spectroscopy has been employed to distinguish between the Raman spectrum of pristine hydrogenated diamond like carbon (PHDLC) and that of electrochemically hydrogenated diamond like carbon (ECHDLC). The enhancement of the background photoluminescence (PL) in the Raman spectrum and broadening of PL spectrum of ECHDLC are identified to be due to increase of sp3 C-H density onto the PHDLC surface, during novel electrochemical process of hydrogenation of sp2 C=C into sp3 C-H.



rate research

Read More

We have developed a biosensor based on BSA with the help of metal ions binding mechanism to detect and remove inorganic As(III), Cu(II), Pb(II) from water like fishing by hooking system.
130 - A. Das , S. Pisana , S. Piscanec 2007
We demonstrate electrochemical top gating of graphene by using a solid polymer electrolyte. This allows to reach much higher electron and hole doping than standard back gating. In-situ Raman measurements monitor the doping. The G peak stiffens and sharpens for both electron and hole doping, while the 2D peak shows a different response to holes and electrons. Its position increases for hole doping, while it softens for high electron doping. The variation of G peak position is a signature of the non-adiabatic Kohn anomaly at $Gamma$. On the other hand, for visible excitation, the variation of the 2D peak position is ruled by charge transfer. The intensity ratio of G and 2D peaks shows a strong dependence on doping, making it a sensitive parameter to monitor charges.
Off-lattice Grand Canonical Monte Carlo simulations of the clean diamond (111) surface, based on the effective many-body Brenner potential, yield the $(2times1)$ Pandey reconstruction in agreement with emph{ab-initio} calculations and predict the existence of new meta-stable states, very near in energy, with all surface atoms in three-fold graphite-like bonding. We believe that the long-standing debate on the structural and electronic properties of this surface could be solved by considering this type of carbon-specific configurations.
We have developed capacitively-transduced nanomechanical resonators using sp$^2$-rich diamond-like carbon (DLC) thin films as conducting membranes. The electrically conducting DLC films were grown by physical vapor deposition at a temperature of $500{,,}^circ$C. Characterizing the resonant response, we find a larger than expected frequency tuning that we attribute to the membrane being buckled upwards, away from the bottom electrode. The possibility of using buckled resonators to increase frequency tuning can be of advantage in rf applications such as tunable GHz filters and voltage-controlled oscillators.
Surface Enhanced Raman Spectroscopy (SERS) is exploited here to investigate the interaction of isolated sp carbon chains (polyynes) in a methanol solution with silver nanoparticles. Hydrogen-terminated polyynes show a strong interaction with silver colloids used as the SERS active medium revealing a chemical SERS effect. SERS spectra after mixing polyynes with silver colloids show a noticeable time evolution. Experimental results, supported by density functional theory (DFT) calculations of the Raman modes, allow us to investigate the behavior and stability of polyynes of different lengths and the overall sp conversion towards sp2 phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا