Do you want to publish a course? Click here

Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration

140   0   0.0 ( 0 )
 Added by Anne Schukraft
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

A search for high-energy neutrinos was performed using data collected by the IceCube Neutrino Observatory from May 2009 to May 2010, when the array was running in its 59-string configuration. The data sample was optimized to contain muon neutrino induced events with a background contamination of atmospheric muons of less than 1%. These data, which are dominated by atmospheric neutrinos, are analyzed with a global likelihood fit to search for possible contributions of prompt atmospheric and astrophysical neutrinos, neither of which have yet been identified. Such signals are expected to follow a harder energy spectrum than conventional atmospheric neutrinos. In addition, the zenith angle distribution differs for astrophysical and atmospheric signals. A global fit of the reconstructed energies and directions of observed events is performed, including possible neutrino flux contributions for an astrophysical signal and atmospheric backgrounds as well as systematic uncertainties of the experiment and theoretical predictions. The best fit yields an astrophysical signal flux for $ u_mu + bar u_mu $ of $E^2 cdot Phi (E) = 0.25 cdot 10^{-8} textrm{GeV} textrm{cm}^{-2} textrm{s}^{-1} textrm{sr}^{-1}$, and a zero prompt component. Although the sensitivity of this analysis for astrophysical neutrinos surpasses the Waxman and Bahcall upper bound, the experimental limit at 90% confidence level is a factor of 1.5 above at a flux of $E^2 cdot Phi (E) = 1.44 cdot 10^{-8} textrm{GeV} textrm{cm}^{-2} textrm{s}^{-1} textrm{sr}^{-1}$.



rate research

Read More

The IceCube Neutrino Observatory is a 1 km$^{3}$ detector currently taking data at the South Pole. One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresolved sources. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could manifest itself as a detectable signal that may be differentiated from the atmospheric neutrino background by spectral measurement. This analysis uses data from the IceCube detector collected in its half completed configuration which operated between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos. A total of 12,877 upward going candidate neutrino events have been selected for this analysis. No evidence for a diffuse flux of astrophysical muon neutrinos was found in the data set leading to a 90 percent C.L. upper limit on the normalization of an $E^{-2}$ astrophysical $ u_{mu}$ flux of $8.9 times 10^{-9} mathrm{GeV cm^{-2} s^{-1} sr^{-1}}$. The analysis is sensitive in the energy range between $35 mathrm{TeV} - 7 mathrm{PeV}$. The 12,877 candidate neutrino events are consistent with atmospheric muon neutrinos measured from 332 GeV to 84 TeV and no evidence for a prompt component to the atmospheric neutrino spectrum is found.
143 - Sean Grullon 2010
The IceCube Neutrino Observatory is a 1 $km^{3}$ detector currently under construction at the South Pole. Searching for high energy neutrinos from unresolved astrophysical sources is one of the main analysis strategies used in the search for astrophysical neutrinos with the IceCube Neutrino Observatory. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could contribute to form a detectable signal above the atmospheric neutrino background. A reliable method of estimating the energy of the neutrino-induced lepton is crucial for identifying astrophysical neutrinos. An analysis is underway using data from the half completed detector taken during its 2008-2009 science run.
120 - Donglian Xu 2017
High-energy (TeV-PeV) cosmic neutrinos are expected to be produced in extremely energetic astrophysical sources such as active galactic nuclei. The IceCube Neutrino Observatory at the South Pole has recently detected a diffuse astrophysical neutrino flux. While the flux is consistent with all flavors of neutrinos being present, identification of tau neutrinos within the flux is yet to occur. Although tau neutrino production is thought to be low at the source, an equal fraction of neutrinos are expected at Earth due to averaged neutrino oscillations over astronomical distances. Above a few hundred TeV, tau neutrinos become resolvable in IceCube with negligible background from cosmic-ray induced atmospheric neutrinos. Identification of tau neutrinos within the observed flux is crucial to precise measurement of its flavor content, which could serve to test fundamental neutrino properties over extremely long baselines, and possibly shed light on new physics beyond the Standard Model. We present the analysis method and results from a recent search for astrophysical tau neutrinos in three years of IceCube data.
Results from the IceCube Neutrino Observatory have recently provided compelling evidence for the existence of a high energy astrophysical neutrino flux utilizing a dominantly Southern Hemisphere dataset consisting primarily of nu_e and nu_tau charged current and neutral current (cascade) neutrino interactions. In the analysis presented here, a data sample of approximately 35,000 muon neutrinos from the Northern sky was extracted from data taken during 659.5 days of livetime recorded between May 2010 and May 2012. While this sample is composed primarily of neutrinos produced by cosmic ray interactions in the Earths atmosphere, the highest energy events are inconsistent with a hypothesis of solely terrestrial origin at 3.7 sigma significance. These neutrinos can, however, be explained by an astrophysical flux per neutrino flavor at a level of Phi(E_nu) = 9.9^{+3.9}_{-3.4} times 10^{-19} GeV^{-1} cm^{-2} sr^{-1} s^{-1} ({E_nu / 100 TeV})^{-2}, consistent with IceCubes Southern Hemisphere dominated result. Additionally, a fit for an astrophysical flux with an arbitrary spectral index was performed. We find a spectral index of 2.2^{+0.2}_{-0.2}, which is also in good agreement with the Southern Hemisphere result.
We present a targeted search for blazar flux-correlated high-energy ($varepsilon_ u > 1$ TeV) neutrinos from six bright northern blazars, using the public database of northern-hemisphere neutrinos detected during IC40 40-string operations of the IceCube neutrino observatory (April 2008 to May 2009). Our six targeted blazars are subjects of long-term monitoring campaigns by the VERITAS TeV gamma-ray observatory. We use the publicly-available VERITAS lightcurves to identify periods of excess and flaring emission. These predefined intervals serve as our active temporal windows in a search for an excess of neutrinos, relative to Poisson fluctuations of the near-isotropic atmospheric neutrino background which dominates at these energies. After defining the parameters of an optimized search, we confirm the expected Poisson behavior with Monte Carlo simulations prior to testing for excess neutrinos in the actual data. We make two searches: One for excess neutrinos associated with the bright flares of Mrk 421 that occurred during the IC40 run, and one for excess neutrinos associated with the brightest emission periods of five other blazars (Mrk 501, 1ES 0805+524, 1ES 1218+304, 3C66A, and W Comae), all significantly fainter than the Mrk 421 flares. We find no significant excess of neutrinos from the preselected blazar directions during the selected temporal windows. We derive 90%-confidence upper limits on the number of expected flux-associated neutrinos from each search. These limits are consistent with previous point-source searches and Fermi GeV flux-correlated searches. Our upper limits are sufficiently close to the physically-interesting regime that we anticipate future analyses using already-collected data will either constrain models or yield discovery of the first blazar-associated high-energy neutrinos.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا