Do you want to publish a course? Click here

Composite flavor-singlet scalar in twelve-flavor QCD

170   0   0.0 ( 0 )
 Added by Takeshi Yamazaki
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We report the calculation of the flavor-singlet scalar in the SU(3) gauge theory with the degenerate twelve fermions in the fundamental representation using a HISQ-type action at a fixed $beta$. In order to reduce the large statistical error coming from the vacuum-subtracted disconnected correlator, we employ a noise reduction method and a large number of configurations. We observe that the flavor-singlet scalar is lighter than the pion in this theory from the calculations with the fermion bilinear and gluonic operators. This peculiar feature is considered to be due to the infrared conformality of this theory, and it is a promissing signal for a walking technicolor, where a light composite Higgs boson is expected to emerge by approximate conformal dynamics.



rate research

Read More

Based on lattice simulations using highly improved staggered quarks for twelve-flavor QCD with several bare fermion masses, we observe a flavor-singlet scalar state lighter than the pion in the correlators of fermionic interpolating operators. The same state is also investigated using correlators of gluonic interpolating operators. Combined with our previous study, that showed twelve-flavor QCD to be consistent with being in the conformal window, we infer that the lightness of the scalar state is due to infrared conformality. This result shed some light on the possibility of a light composite Higgs boson (technidilaton) in walking technicolor theories.
Studying SU(3) gauge theories with increasing number of light fermions is relevant both for understanding the strong dynamics of QCD and for constructing strongly interacting extensions of the Standard Model (e.g. UV completions of composite Higgs mo dels). In order to contrast these many-flavors strongly interacting theories with QCD, we study the flavor-singlet spectrum as an interesting probe. In fact, some composite Higgs models require the Higgs boson to be the lightest flavor-singlet scalar in the spectrum of a strongly interacting new sector with a well defined hierarchy with the rest of the states. Moreover, introducing many light flavors at fixed number of colors can influence the dynamics of the lightest flavor-singlet pseudoscalar. We present the on-going study of these flavor-singlet channels using multiple interpolating operators on high-statistics ensembles generated by the LatKMI collaboration and we compare results with available data obtained by the Lattice Strong Dynamics collaboration. For the theory with 8 flavors, the two collaborations have generated configurations that complement each others with the aim to tackle the massless limit using the largest possible volumes.
We present the first observation of a flavor-singlet scalar meson as light as the pion in $N_f=8$ QCD on the lattice, using the Highly Improved Staggered Quark action. Such a light scalar meson can be regarded as a composite Higgs with mass 125 GeV. In accord with our previous lattice results showing that the theory exhibits walking behavior, the light scalar may be a technidilaton, a pseudo Nambu-Goldstone boson of the approximate scale symmetry in walking technicolor.
We study infrared conformality of the twelve-flavor QCD on the lattice. Utilizing the highly improved staggered quarks (HISQ) type action which is useful to study the continuum physics, we analyze the lattice data of the mass and the decay constant of a pseudoscalar meson and the mass of a vector meson as well at several values of lattice spacing and fermion mass. Our result is consistent with the conformal hypothesis for the mass anomalous dimension $gamma_m sim 0.4-0.5$.
In search for a composite Higgs boson (techni-dilaton) in the walking technicolor, we present our preliminary results on the first observation of a light flavor-singlet scalar in a candidate theory for the walking technicolor, the Nf=8 QCD, which was found in our previous paper to have spontaneous chiral symmetry breaking together with remnants of the conformality. Based on simulations with the HISQ-type action on several lattice sizes with various fermion masses, we find evidence of a flavor-singlet scalar meson with mass comparable to that of the Nambu-Goldstone pion in both the small fermion-mass region, where chiral perturbation theory works, and the intermediate fermion-mass region where the hyperscaling relation holds. We further discuss its chiral limit extrapolation in comparison with other states studied in our previous paper: the scalar has a mass much smaller than that of the vector meson, which is compared to the Nambu-Goldstone pion having a vanishing mass in that limit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا