Do you want to publish a course? Click here

BAO cosmography

218   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cosmography provides a model-independent way to map the expansion history of the Universe. In this paper we simulate a Euclid-like survey and explore cosmographic constraints from future Baryonic Acoustic Oscillations (BAO) observations. We derive general expressions for the BAO transverse and radial modes and discuss the optimal order of the cosmographic expansion that provide reliable cosmological constraints. Through constraints on the deceleration and jerk parameters, we show that future BAO data have the potential to provide a model-independent check of the cosmic acceleration as well as a discrimination between the standard $Lambda$CDM model and alternative mechanisms of cosmic acceleration.



rate research

Read More

92 - Tommaso Treu 2016
Gravitational time delays, observed in strong lens systems where the variable background source is multiply-imaged by a massive galaxy in the foreground, provide direct measurements of cosmological distance that are very complementary to other cosmographic probes. The success of the technique depends on the availability and size of a suitable sample of lensed quasars or supernovae, precise measurements of the time delays, accurate modeling of the gravitational potential of the main deflector, and our ability to characterize the distribution of mass along the line of sight to the source. We review the progress made during the last 15 years, during which the first competitive cosmological inferences with time delays were made, and look ahead to the potential of significantly larger lens samples in the near future.
Cosmography, the study and making of maps of the universe or cosmos, is a field where visual representation benefits from modern three-dimensional visualization techniques and media. At the extragalactic distance scales, visualization is contributing in understanding the complex structure of the local universe, in terms of spatial distribution and flows of galaxies and dark matter. In this paper, we report advances in the field of extragalactic cosmography obtained using the SDvision visualization software in the context of the Cosmicflows Project. Here, multiple visualization techniques are applied to a variety of data products: catalogs of galaxy positions and galaxy peculiar velocities, reconstructed velocity field, density field, gravitational potential field, velocity shear tensor viewed in terms of its eigenvalues and eigenvectors, envelope surfaces enclosing basins of attraction. These visualizations, implemented as high-resolution images, videos, and interactive viewers, have contributed to a number of studies: the cosmography of the local part of the universe, the nature of the Great Attractor, the discovery of the boundaries of our home supercluster of galaxies Laniakea, the mapping of the cosmic web, the study of attractors and repellers.
Einstein Telescope (ET) is a 3rd generation gravitational-wave (GW) detector that is currently undergoing a design study. ET can detect millions of compact binary mergers up to redshifts 2-8. A small fraction of mergers might be observed in coincidence as gamma-ray bursts, helping to measure both the luminosity distance and red-shift to the source. By fitting these measured values to a cosmological model, it should be possible to accurately infer the dark energy equation-of-state, dark matter and dark energy density parameters. ET could, therefore, herald a new era in cosmology.
We present a purely geometrical method for probing the expansion history of the Universe from the observation of the shape of stacked voids in spectroscopic redshift surveys. Our method is an Alcock-Paczynski (AP) test based on the average sphericity of voids posited on the local isotropy of the Universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. We establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, assuming that the void statistics that we derive from N-body simulations is preserved when considering galaxy surveys, we assess the capability of this approach to constrain dark energy parameters. We report this assessment in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed EUCLID mission which is particularly suited for this technique since it is a spectroscopic survey. The FoM due to stacked voids from the EUCLID wide survey may double that of all other dark energy probes derived from EUCLID data alone (combined with Planck priors). In particular, voids seem to outperform Baryon Acoustic Oscillations by an order of magnitude. This result is consistent with simple estimates based on mode-counting. The AP test based on stacked voids may be a significant addition to the portfolio of major dark energy probes and its potentialities must be studied in detail.
Cosmography is a powerful tool to investigate the Universe kinematic and then to reconstruct dynamics in a model-independent way. However, recent new measurements of supernovae Ia and quasars have populated the Hubble diagram up to high redshifts ($z sim 7.5$) and the application of the traditional cosmographic approach has become less straightforward due to the large redshifts implied. Here we investigate this issue through an expansion of the luminosity distance-redshift relation in terms of orthogonal logarithmic polynomials. In particular we point out the advantages of a new procedure of orthogonalization and we show that such an expansion provides a very good fit in the whole $z=0div 7.5$ range to both real and mock data obtained assuming various cosmological models. Moreover, despite of the fact that the cosmographic series is tested well beyond its convergence radius, the parameters obtained expanding the luminosity distance - redshift relation for the $Lambda$CDM model are broadly consistent with the results from a fit of mock data obtained with the same cosmological model. This provides a method to test the reliability of a cosmographic function to study cosmological models at high redshifts and it demonstrates that the logarithmic polynomial series can be used to test the consistency of the $Lambda$CDM model with the current Hubble diagram of quasars and supernovae Ia. We confirm a strong tension (at $>4sigma$) between the concordance cosmological model and the Hubble diagram at $z>1.5$. Such a tension is dominated by the contribution of quasars at $z>2$ and starts to be present also in the few supernovae Ia observed at $z>1$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا